• Title/Summary/Keyword: Stacked Patch Antenna

Search Result 56, Processing Time 0.023 seconds

The Design and Implementation of a Multi-Band Planar Antenna for Cellular/PCS/IMT-2000 Base Station (셀룰러/PCS/IMT-2000 기지국용 다중대역 평판 안테나 설계 및 구현)

  • 오경진;김봉준;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.781-787
    • /
    • 2004
  • In this paper, a novel dual and wide band aperture stacked patch antenna for Cellular/PCS/IMT-2000 base station is presented. It consists of single microstrip patch having notches along the radiating patch, two dielectric substrates and a form material. To achieve wide band characteristic, we utilize the coupling effect between the notched patch and the resonant aperture in the ground plane and by properly cutting notches on the patch, an aperture stacked patch antenna could be designed to yield dual frequency operation. By the proper choice of resonant aperture size and height of a foam material, dual and wide band characteristic could be realized the measured impedance bandwidth(1:1.5 VSWR) of designed antenna at lower band(860 MHz) reaches 77 MHz and covers the Cellular CDMA band(824∼894 MHz). The measured impedance bandwidth(1:1.5 VSMR) of the designed antenna at upper band(1,960 MHz) is about 550 MHz and covers both the PCS band(1,750∼l,870 MHz) and the for-2000 band(1,920∼2,170 MHz). Good broadside radiation with high gain(5.65∼7.4 dBi) characteristics have also been observed.

A Design of X-Band Microstrip Array Antenna (X대역 마이크로스트립 배열 안테나)

  • Kim, Min-Joon;Cheon, I-Hwan;Kim, Ju-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.860-867
    • /
    • 2009
  • In this paper, we designed the array antenna for FMCW radar in X - band frequency, and we chose stacked structure for improvement of narrow bandwidth. The array antenna is implemented on the circuit board which is relative permittivity 2.33 and the stacked patchs are designed on the circuit board which is relative permittivity 4.6. A Foam which has a similar permittivity of air is added to keep the particular gap between array antenna and the stacked patch. The result of array antenna has characteristics that a half-power beam width is $10.6^{\circ}$ and antenna gain is 18.70 dBi and bandwidth is 1.25GHz at the design frequency of 9GHz. The result of the array antenna with the stacked structure has that the half power beam width is $15.17^{\circ}$ and the antenna gain is 15.85dBi and bandwidth is 2GHz. It is needed to improve the antenna gain as keeping bandwidth in same level.

Wideband Stacked Microstrip Antenna with Rectangular and Triangular Parasitic Patches for 860MHz Band (직사각형 및 삼각형 기생패치를 이용한 860MHz 대역 광대역 적층 마이크로스트립 안테나)

  • Ko, Jin-Hyun;Kim, Gun-Kyun;Rhee, Seung-Yeop;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.874-879
    • /
    • 2016
  • A wideband stacked patch antenna with parasitic elements, rectangular and triangle shaped patches, is proposed. Two different shaped parasitic elements are placed in the above of main rectangular microstrip patch antenna in order to achieve wide bandwidth for 860 MHz band. Coupling between the main patch and parasitic patches is realized by thick air gap. The gap and locations of parasitic patches are found to be the main factor of the wideband impedance matching. The proposed antenna is designed and fabricated on a ground plane with small size of $119mm{\times}109mm$ for application of compact transceivers. The fabricated antenna on an FR4 substrate shows that the minimum measured return loss is below -11.68dB at 824 MHz and an impedance band of 818~919 MHz(11.7%) at 10dB return loss level. The measured radiation patterns are similar to those of a conventional patch antenna with maximum gain of 2.11 dBi at 824 MHz.

Improvement of Communication Reliability of Small UAV by a Tapered Stacked Antenna

  • Kim, Duck-Hwan;Lee, Kyu-Hwan;Kim, Young-Sik
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.796-798
    • /
    • 2006
  • This letter proposes a tapered stacked microstrip antenna for application in small unmanned aerial vehicles (UAVs), which has advantages in mountainous terrains. With its tapered structure and increased bandwidth designed to operate at the resonance frequency of 2.4 GHz, the proposed antenna improves directivity, accuracy, and precision of small UAVs. The test flight results show the proposed tapered antenna has a three times higher impedance capability of 350 MHz based on VSWR<2. The transmission pattern is also more reliable than that of previous antenna designs.

  • PDF

A Design of stacked bow-tie antenna for broadband characteristics (광대역 특성을 가지는 적층 구조의 Bow-Tie 안테나 설계)

  • Kim, Jin;Choi, Sung-Yeul;Park, Kyung-Su;Lee, Hee-Bok;Ko, Young-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.497-500
    • /
    • 2000
  • There are many researches to increase bandwidth of the microstrip patch antenna for wireless LAN. In spite of broad bandwidth, Bow-Tie microstrip patch antenna, broadband microstrip patch antenna, has disadvantages that are low gain and big size. In this paper, stacked Bow-Tie microstrip patch antenna for wireless LAN is designed in 5.725∼5.825㎓ band. This antenna has characteristics that are broadband bandwidth, high gain and small size compared with microstrip patch antenna. In simulated results, the return loss is -34.2㏈ at 5.78㎓ and bandwidth is 11.345% for VSWR 2:1 and 7.75% for VSWR 1.5:1. In measured results, the return loss is -38.45㏈ at 5.78㎓ and bandwidth is 13% for VSWR 2:1 and 5.6% for VSWR 1.5:1. It has 59.37$^{\circ}$-3㏈ beam width and 6.5㏈ gain.

  • PDF

Characteristics of Wideband Patch Antenna with an L-Strip-Fed Structure (L-스트립 급전구조를 갖는 적층 패치 안테나의 특성)

  • 전주성;김장욱;김종규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.4
    • /
    • pp.366-372
    • /
    • 2002
  • A wideband stacked patch antenna fed by an L-strip feeder is studied experimentally. The objective of this paper is to design small wideband antenna for PCS and IMT-2000 service. Experimental results confirm that an impedance bandwidth(VSWR$\leq$2) of 704.7 MHz(35.95 %) is achieved at PCS and IMT-2000 frequency band. The studied antenna can be designed easily for extension of away because it has simple structure.

Design of Broadband Microstrip Antenna for 2.5GHz with Inverted Parasite Patch and the Proximity Stub (근접 스터브와 뒤집힌 기생 패치를 이용한 2.5GHz용 광대역 마이크로스트립 안테나의 설계)

  • Cho, Ki-Ryang;Kim, Dae-Ik;Kim, Gun-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.467-474
    • /
    • 2019
  • In this paper, we studied a method for a broadband stacked patch antenna structure which is widely used for bandwidth improvement. The characteristics according to the distance between the two patches were analyzed and the impedance matching was optimized by connecting parallel open stubs to the main patch feed line. The shunt matching stub is inserted underneath the parasitic patch and so it does not require additional space, which enables the proposed antenna structure to be advantageous in miniaturizing antenna. The effects of the various parameters on the antenna performance are examined, and we introduced the design procedure for the proposed antenna to operate in the frequency range of 2.3~2.7GHz. Experimental results show that the bandwidth of the proposed antenna is about 480MHz with 2.27~2.75GHz bandwidth. And the antenna gain was 5.8dBi at 2.3GHz and 7.8dBi at 2.6GHz within the bandwidth.

Design of PIFA with Stacked U-shape Parasitic Patch for GPS/IMT-2000/Bluetooth Application. (U자형 적층 기생패치를 갖는 GPS/IMT-2000/Bluetooth용 PIFA 설계)

  • Shin Kyung-Sup;Kim Yong-Do;Won Chung-Ho;Lee Hong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.197-200
    • /
    • 2004
  • In this paper, a novel triple-band planar inverted F antenna(PIFA) is proposed. The goal of this paper is to design a small antenna which is operated in triple band. Using T-shape slit and stacked U-shape parasitic patch, good impedance matching is achieved in three band. T-shape slit is inserted on the main patch in order to effectively control the excited patch surface current distributions. The proposed antenna occupies a small volume of $26{\times}9.5{\times}6mm^3$, and the obtained impedance bandwidths cover the required operating bandwidths of the GPS(1565-1585MHz), IMT-2000(1885-2200MHz) and Bluetooth (2400-2484MHz) bands.

  • PDF

GPS/GLONASS Microstrip Active Antenna Apply to Curve Surface (곡면에 부착 가능한 GPS/GLONASS 마이크로스트립 능동 안테나)

  • Kim, Mi-Suk;Son, Seok-Bo;Joo, Hahn-Kie;Bae, Joon-Sung;Kim, Joon-O
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, dual-feed circularly polarized microstrip patch antenna for GPS L1, GPS L2, GLONASS L1 signal was fabricated by using stacked patch. It was fed by dual coaxial probe on the patch at 50ohm impedance, and was simulated to resonate at GPS L1, GPS L2, GLONASS L1. To realize characteristics of right hand circular polarization using dual-feed stacked patch antenna and hybrid coupler for $90^{\circ}$ phase difference. Output of hybrid coupler was contacted input of Low Noise Amplifier(LNA). The LNA using dual band pass filter was designed and fabricated. The measured results of the implemented antenna is VSWR < 1.5 : 1 and the gain of 32dB(Zenith) over at GPS L1, L2, GLONASS L1.

Stacked Slot Patch Antenna for Wireless Sensors Embedded in Concrete (콘크리트 매립 센서를 위한 이중 슬롯 패치 안테나)

  • Lee, Jae-Hyuk;Lee, Sung-Ho;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.915-923
    • /
    • 2018
  • A concrete embedded antenna design is proposed for probing the durability of a building at an industrial scientific medical band of 902~908 MHz. The proposed antenna is designed with a stacked slot patch structure for lower impedance variation to a dielectric constant of concrete, as a dielectric constant difference is derived from the moisture content. The proposed structure has a wider bandwidth when a parasitic patch structure is used, which reduces antenna performance degradation resulting from the moisture content of concrete. The measured voltage standing wave ratio of the proposed structure is less than 2 and the beam width is approximately $80^{\circ}$, whereas the gain is greater than 7 dBi. The proposed antenna is fabricated with a rectangle-type concrete block, which is simulated and measured for return loss and antenna gain.