• Title/Summary/Keyword: Stacked Beam

Search Result 50, Processing Time 0.036 seconds

A Design of stacked bow-tie antenna for broadband characteristics (광대역 특성을 가지는 적층 구조의 Bow-Tie 안테나 설계)

  • Kim, Jin;Choi, Sung-Yeul;Park, Kyung-Su;Lee, Hee-Bok;Ko, Young-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.497-500
    • /
    • 2000
  • There are many researches to increase bandwidth of the microstrip patch antenna for wireless LAN. In spite of broad bandwidth, Bow-Tie microstrip patch antenna, broadband microstrip patch antenna, has disadvantages that are low gain and big size. In this paper, stacked Bow-Tie microstrip patch antenna for wireless LAN is designed in 5.725∼5.825㎓ band. This antenna has characteristics that are broadband bandwidth, high gain and small size compared with microstrip patch antenna. In simulated results, the return loss is -34.2㏈ at 5.78㎓ and bandwidth is 11.345% for VSWR 2:1 and 7.75% for VSWR 1.5:1. In measured results, the return loss is -38.45㏈ at 5.78㎓ and bandwidth is 13% for VSWR 2:1 and 5.6% for VSWR 1.5:1. It has 59.37$^{\circ}$-3㏈ beam width and 6.5㏈ gain.

  • PDF

Structural and Electrical Properties of $CuInS_{2}$ Thin Films ($CuInS_{2}$ 박막의 구조 및 전기적 특성)

  • Kim, Seong-Ku;Park, Gye-Choon;Yoo, Yong-Tek
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.78-82
    • /
    • 1994
  • Single-phase $CuInS_{2}$ thin film were prepared by E-beam deposition and the effects of its annealing were investigated. The S/In/Cu was stacked from S, In and Cu by EBE method and then, In the nitrogen atmosphere, the stacked layer were annealed to convert chalcopyrite $CuInS_{2}$ thin films. and that result we obtained p-type Chalcopyrite $CuInS_{2}$ thin films, Its resistivity was $0.03{\sim}0.007{\Omega}cm$, Hall mobility was $0.07{\sim}0.1cm^{2}V^{-1}S^{-1}$ and Hall concentration was $10^{20-21}cm^{-3}$, respectively.

  • PDF

DEVELOPMENT AND REPAIR OF LAMINATE TOOLS BY JOINING PROCESS

  • Yoon, Suk-Hwan;Na, Suck-Joo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.402-407
    • /
    • 2002
  • Laminate tooling process is a fast and simple method to make metal tools directly for various molding processes such as injection molding in rapid prototyping field. Metal sheets are usually cut, stacked, aligned and joined with brazing or soldering. Through the joining process, all of the metal sheet layers should be rigidly joined. When joining process parameters are not appropriate, there would be defects in the layers. Among various types of defects, non-bonded gaps of the tool surface are of great importance, because they directly affect the surface quality and dimensional accuracy of the final products. If a laminate tool with defects has to be abandoned, it could lead to great loss of time and cost. Therefore a repair method for non-bonded gaps of the surface is essential and has important meaning for rapid prototyping. In this study, a rapid laminate tooling system composed of a CO2 laser, a furnace, and a milling machine was developed. Metal sheets were joined by furnace brazing, dip soldering and adhesive bonding. Joined laminate tools were machined by a high-speed milling machine to improve surface quality. Also, repair brazing and soldering methods of the laminates using the $CO_2$ laser system have been investigated. ill laser repair process, the beam duration, beam power and beam profile were of great importance, and their effects were simulated by [mite element methods. The simulation results were compared with the experimental ones, and optimal parameters for laser repair process were investigated.

  • PDF

Development and Characterization of a 400-W Slab-type Nd:YAG Gain Module

  • Cha, Yong-Ho;Lee, Sungman;Lim, Gwon;Baik, Sung-Hoon;Kwon, Sung-Ok;Cha, Byung-Heon;Lee, Jung-Hwan;Kang, Eung-Cheol
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.53-56
    • /
    • 2012
  • We have developed a slab-type Nd:YAG gain module based on the techniques of conduction cooling and end pumping. The Nd:YAG slab is end-capped on both ends by undoped pure YAG and is pumped through the end-caps by stacked arrays of laser diode bars. The slab's surfaces of total internal reflection are in contact on both sides with microchannel cooling blocks which are cooled by water circulation. The power oscillator based on the gain module generates more than 400 W at 1-kW pumping with a slope efficiency of 55%. The small-signal gain of the gain module is 10 in a single zig-zag pass, and the amplified beam shows a near diffraction-limited beam quality.

Atomic Resolution Imaging of Rotated Bilayer Graphene Sheets Using a Low kV Aberration-corrected Transmission Electron Microscope

  • Ryu, Gyeong Hee;Park, Hyo Ju;Kim, Na Yeon;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.218-222
    • /
    • 2012
  • Modern aberration-corrected transmission electron microscope (TEM) with appropriate electron beam energy is able to achieve atomic resolution imaging of single and bilayer graphene sheets. Especially, atomic configuration of bilayer graphene with a rotation angle can be identified from the direct imaging and phase reconstructed imaging since atomic resolution Moir$\acute{e}$ pattern can be obtained successfully at atomic scale using an aberration-corrected TEM. This study boosts a reliable stacking order analysis, which is required for synthesized or artificially prepared multilayer graphene, and lets graphene researchers utilize the information of atomic configuration of stacked graphene layers readily.

Bypass Heat Sink Analysis for a Laser Diode Bar with a Top Canopy

  • Ji, Byeong-Gwan;Lee, Seung-Gol;Park, Se-Geun;O, Beom-Hoan
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.113-117
    • /
    • 2017
  • With the increasing use of high-power laser diode bars (LDBs) and stacked LDBs, the issue of thermal control has become critical, as temperature is related to device efficiency and lifetime, as well as to beam quality. To improve the thermal resistance of an LDB set, we propose and analyze a bypass heat sink with a top canopy structure for an LDB set, instead of adopting a thick submount. The thermal bypassing in the top-canopy structure is efficient, as it avoids the cross-sectional thermal saturation that may exist in a thick submount. The efficient thickness range of the submount in a typical LDB set is guided by the thermal resistance as a function of thickness, and the simulated bypassing efficiency of a canopy is higher than a simple analytical prediction, especially for thinner canopies.

Electrical and Structural Properties of $CuInS_2$ thin films fabricated by EBE(Electronic Beam Evaporator) Method (전자빔 증착기로 증착된 $CuInS_2$ 박막의 전기적 구조적 특성)

  • Yang, Hyeon-Hun;Kim, Young-Jun;Jeong, Woon-Jo;Park, Gye-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.170-173
    • /
    • 2006
  • [ $CuInS_2$ ] filims were appeared from 0.84 to 1.27 of Cu/In composition ratio and sulfur composition ratios of $CuInS_2$ thin films fabricated, Also when Cu/In composition ratio was 1.03, $CuInS_2$ thin film with chalcopyrite structure had the highest XRD peak (112). And lattice constant (a) of and grain size of the film tin s ambient were appeared a little larger than those in only Vacuum The films in S ambient were p-type with resistive of around $10^{-1}{\Omega}cm$ and optical energy band gaps of the films in S ambient were appeared a little larger than those in only Vacuum. Analysis of the optical energy band gap of $CuInS_2$ thin films a value of 1.53eV.

  • PDF

Design of Stacked Circular Microstrip Antenna for Mobile Communication Base Station (이동통신 기지국을 위한 적층된 원형 마이크로스트립 안테나 설계)

  • Kim, Nam-Hyeon;No, Gwang-Hyeon;Gang, Yeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.2
    • /
    • pp.83-90
    • /
    • 2000
  • In this paper, a stacked circular-disk microstrip 1${\times}$4 array antenna was designed and manufactured and tested to apply in next generation mobile communication, on IMT-2000 system(up-link: 1.885 GHz∼2.025 GHz, down-link: 2.11 GHz∼2.2 GHz) base station which has dual frequency, broadband and high-gain characteristics. The experimental results are as follows : resonant frequency of 1.885 GHz and 2.178 GHz VSWR (1.064 , 1.432), return loss (-30.19 dB , -24.99 dB), band width (VSWR<2) are 402 MHz, -3dB beam width at radiation pattern are ${\alpha}$E-16.8$^{\circ}$, ${\alpha}$H-69$^{\circ}$(1.885 GHz) and ${\alpha}$E-l5.2$^{\circ}$, ${\alpha}$H-51.5$^{\circ}$(2.178 GHz), gain(13.7 dBi∼15.21 dBi).

  • PDF

Design of Stacked Bow-Tie Antenna for Wireless LAN (무선 LAN을 위한 적층 구조의 Bow-Tie Antenna의 설계)

  • 고영호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1455-1461
    • /
    • 2000
  • There are many researches to increase bandwidth of the microstrip patch antenna for wireless LAN. In spite of broad bandwidth, Bow-Tie antenna has disadvantages that are low gain and big size. In this paper, stacked Bow-Tie microstrip patch antenna for wireless LAN is designed in 5.725 ~5.825 GHz band. This antenna has characteristics that are broadband bandwidth, high gain and small size compared with microstrip patch antenna. In simulated results, the return loss is -34.2 dB at 5.78 GHz and bandwidth is 11.345% for VSWR 2:1 and 7.75%for VSWR 1.5:1. In measured results, the return loss is -38.45 dB at 5.78 GHz and bandwidth is 13% for VSWR 2:1 and 5.6% for VSWR 1.5:1. It has 73.16$^{\circ}$ -3dB beam width and 6.5dB gain.

  • PDF

High Temperature Tribology Behavior of 4YSZ Coatings Fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD) (플라즈마 용사 및 전자빔 물리기상 증착법으로 제조된 4YSZ 코팅의 고온마찰마모 거동)

  • Yang, Young-Hwan;Park, Chan-Young;Lee, Won-Jun;Kim, Sun-Joo;Lee, Sung-Min;Kim, Seongwon;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.6
    • /
    • pp.258-263
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings are fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD) with top coating of thermal barrier coating (TBC). NiCrAlY based bond coat is prepared as 150 ${\mu}m$ thickness by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. Each 4YSZ top coating shows different tribological behaviors based on the inherent layer structures. 4YSZ by APS which has splat-stacked structure shows lower friction coefficient but higher wear rate than 4YSZ by EB-PVD which has columnar structure. For 4YSZ by APS, such results are expected due to the sliding wear accompanied with local delamination of splats.