• Title/Summary/Keyword: Stacked Autoencoders

Search Result 3, Processing Time 0.016 seconds

Design of Fuzzy k-Nearest Neighbors Classifiers based on Feature Extraction by using Stacked Autoencoder (Stacked Autoencoder를 이용한 특징 추출 기반 Fuzzy k-Nearest Neighbors 패턴 분류기 설계)

  • Rho, Suck-Bum;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.113-120
    • /
    • 2015
  • In this paper, we propose a feature extraction method using the stacked autoencoders which consist of restricted Boltzmann machines. The stacked autoencoders is a sort of deep networks. Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can be interpreted as stochastic neural networks. In terms of pattern classification problem, the feature extraction is a key issue. We use the stacked autoencoders networks to extract new features which have a good influence on the improvement of the classification performance. After feature extraction, fuzzy k-nearest neighbors algorithm is used for a classifier which classifies the new extracted data set. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

Agglomerative Hierarchical Clustering Analysis with Deep Convolutional Autoencoders (합성곱 오토인코더 기반의 응집형 계층적 군집 분석)

  • Park, Nojin;Ko, Hanseok
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Clustering methods essentially take a two-step approach; extracting feature vectors for dimensionality reduction and then employing clustering algorithm on the extracted feature vectors. However, for clustering images, the traditional clustering methods such as stacked auto-encoder based k-means are not effective since they tend to ignore the local information. In this paper, we propose a method first to effectively reduce data dimensionality using convolutional auto-encoder to capture and reflect the local information and then to accurately cluster similar data samples by using a hierarchical clustering approach. The experimental results confirm that the clustering results are improved by using the proposed model in terms of clustering accuracy and normalized mutual information.

A Study on the Characteristics of a series of Autoencoder for Recognizing Numbers used in CAPTCHA (CAPTCHA에 사용되는 숫자데이터를 자동으로 판독하기 위한 Autoencoder 모델들의 특성 연구)

  • Jeon, Jae-seung;Moon, Jong-sub
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.25-34
    • /
    • 2017
  • Autoencoder is a type of deep learning method where input layer and output layer are the same, and effectively extracts and restores characteristics of input vector using constraints of hidden layer. In this paper, we propose methods of Autoencoders to remove a natural background image which is a noise to the CAPTCHA and recover only a numerical images by applying various autoencoder models to a region where one number of CAPTCHA images and a natural background are mixed. The suitability of the reconstructed image is verified by using the softmax function with the output of the autoencoder as an input. And also, we compared the proposed methods with the other method and showed that our methods are superior than others.