• 제목/요약/키워드: Stable structural behavior

검색결과 150건 처리시간 0.028초

공동주택의 성능기반설계 시 내진철근의 영향평가 (Performance Based Seismic Design of Apartment Houses by Applying Seismic Rebar)

  • 조민주;유성용;강지연;김형근
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.115-122
    • /
    • 2017
  • In this study, performance based seismic design was performed on the shear wall structural system and the beam-column system as a variable general rebar and seismic rebar, and comparing the capacity of the two models of each system. From nonlinear analyses, the capacity of the shear wall structural system applying seismic rebar has shown a stable behavior after the maximum strength, but there is little difference. Furthermore, both models showed similar capacity between story drift and story shear force and capacity of members. These results are attributed to the fact that the seismic rebar, which is highly ductile under the seismic load applied to the target structure, does not render sufficient capacity.

탄소섬유시트의 전단부착강도에 관한 연구 (Adhesive Shear Strength of Carbon Fiber Sheet)

  • 김윤철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.109-116
    • /
    • 2008
  • 탄소섬유시트의 부착성능을 조사하는 방법으로써 중앙을 절단한 보 공시체를 이용한 휨 거동 형식의 시험기를 개발하여, 콘크리트의 압축강도를 변수로 정적 재하 실험을 실시하였다. 탄소섬유시트의 파단의 결과를 이용하여 이 시험기의 검증과 함께 전단부착강도의 산출식을 도출하려고 노력 하였다. 그 결과, 첫 번째로 새로운 형식의 시험기에 의한 부착강도시험의 타당성이 증명되었다. 두 번째는 CFS 표면 변형률의 결과로부터 구해진 전단부착강도는 2종류의 경향이 있음이 발견되었다. 그 데이터 중에서 비교적 안정성이 높은 전단부착강도의 평균치는 3.41MPa, 하한치는 2.11MPa이었다. 이번 실험에서는 콘크리트의 강도가 전단부착강도에 미치는 특별한 영향을 볼 수 없었다.

가력하중을 통한 CST30제진댐퍼시스템의 구조성능 평가 (Structural Performance Evaluation of VES Damper System subjected to Cyclic Loadings(CST30))

  • 김대훈;이동규;이기학
    • 한국공간구조학회논문집
    • /
    • 제15권2호
    • /
    • pp.61-68
    • /
    • 2015
  • The performance enhancement of various structural building systems from natural hazards has become an inctreasingly important issue in engineering field. In this paper, visco-elastic(VE) CST30 damping systems were tested under cyclic loadings to evaluate their performance in terms of ductility and energy dissipation. Main test variables are relative shear stiffness, rate of loading frequency, and thickness of specimens to evaluate the seismic capacity based on the performance criteria. This experiment was performed using a total of 12 specimens, subjected to cyclic loadings up to a shear deformation of 500%. All the CST30 dampers provided a ductile and stable hysterestic behavior when subjected to the demands of large shear stiffness and different loading frequencies. The test results showed that the CST30 dampers are an effective damping systems to enhance the buildings performance for remodeling and retrofit of buildings.

Experimental and numerical study on innovative seismic T-Resisting Frame (TRF)

  • Ashtari, Payam;Sedigh, Helia Barzegar;Hamedi, Farzaneh
    • Structural Engineering and Mechanics
    • /
    • 제60권2호
    • /
    • pp.251-269
    • /
    • 2016
  • In common structural systems, there are some limitations to provide adequate lateral stiffness, high ductility, and architectural openings simultaneously. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to improve the performance of structures. In this study, Configuration of TRF is a Vertical I-shaped Plate Girder (V.P.G) which is placed in the middle of the span and connected to side columns by two Horizontal Plate Girders (H.P.Gs) at each story level. System performance is improved by utilizing rigid connections in link beams (H.P.Gs). Plastic deformation leads to tension field action in H.P.Gs and causes energy dissipation in TRF; therefore, V.P.G. High plastic deformation in web of TRF's members affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF's members and improve overall performance of the system, appropriate criteria for placement of web stiffeners are presented in this study. In addition, an experimental study is conducted by applying cyclic loading and using finite element models. As a result, hysteresis curves indicate adequate lateral stiffness, stable hysteretic behavior, and high ductility factor of 6.73.

고강도강 비좌굴 가새의 구조성능 평가 (Structural Performance Evaluation of Buckling-Restrained Braces Made of High-Strength Steels)

  • 박만우;주영규;김명한;김지영;김상대
    • 한국강구조학회 논문집
    • /
    • 제20권1호
    • /
    • pp.33-42
    • /
    • 2008
  • 비좌굴 가새는 좌굴을 방지하고 인장영역과 압축영역에서 안정적인 이력거동을 나타내기 위하여 개발되었다. 본 연구에서는 비좌굴 가새의 구조적 성능을 평가하고자 부재의 강도와 하중재하방법을 변수로 하여 실험을 수행하였다. 모든 실험체는 강종을 다르게 적용한 심재와 보강재로 구성되었다. 실험 결과에 의하면 고강도강을 심재로 적용시 연성도가 구성능을 만족하지 못하였다. 그러나 고강도강을 심재로 적용시 일반강을 심재로 적용한 경우에 비해 최대내력은 상승하여 전체 에너지 소산 측면에서는 유사한 성능을 발휘하였다.

Experimental study of buckling-restrained brace with longitudinally profiled steel core

  • Lu, Junkai;Ding, Yong;Wu, Bin;Li, Yingying;Zhang, Jiaxin
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.715-728
    • /
    • 2022
  • A new type of buckling-restrained braces (BRBs) with a longitudinally profiled steel plate working as the core (LPBRB) is proposed and experimentally investigated. Different from conventional BRBs with a constant thickness core, both stiffness and strength of the longitudinally profiled steel core along its longitudinal direction can change through itself variable thickness, thus the construction of LPBRB saves material and reduces the processing cost. Four full-scale component tests were conducted under quasi-static cyclic loading to evaluate the seismic performance of LPBRB. Three stiffening methods were used to improve the fatigue performance of LPBRBs, which were bolt-assembled T-shaped stiffening ribs, partly-welded stiffening ribs and stiffening segment without rib. The experimental results showed LPBRB specimens displayed stable hysteretic behavior and satisfactory seismic property. There was no instability or rupture until the axial ductility ratio achieved 11.0. Failure modes included the out-of-plane buckling of the stiffening part outside the restraining member and core plate fatigue fracture around the longitudinally profiled segment. The effect of the stiffening methods on the fatigue performance is discussed. The critical buckling load of longitudinally profiled segment is derived using Euler theory. The local bulging behavior of the outer steel tube is analyzed with an equivalent beam model. The design recommendations for LPBRB are presented finally.

면진 테이블 시스템의 동적 특성 및 면진성능 (Dynamic Characteristics and Isolation Performance of Isolation Table System)

  • 황재승;주석준;김윤석
    • 한국지진공학회논문집
    • /
    • 제5권4호
    • /
    • pp.67-74
    • /
    • 2001
  • 지진에 대한 구조물의 건전도는 내진설계에 의하여 많이 개선된 반면, 구조물 내부의 설비 및 중요 장비등에 대한 안정성은 최근에 관심을 가지게 되었다. 특히 국보급 문화재나 소장품은 그 가치에 비하여 지진에 대한 안전성이 고려되지 않은 것은 사실이다. 본 연구에서는 지진에 의하여 발생할 수 있는 내부 기기 및 문화재의 전도, 낙하를 방지하기 위한 면진 시스템을 개발하여, 본 장치에 대한 면진성능을 진동대 실험을 통하여 검증하였다. 본 면진 테이블은 전시물의 하부에 설치되어, 바닥판의 진동이 전시대에 전달되는 것을 차단하는 격리시스템이다. 면진성능시험 결과, 면진성능이 80-90%이며 면진테이블의 최대 스트로트내에서 안정적으로 거동하는 것으로 나타났다.

  • PDF

MODELING OF NONLINEAR CYCLIC LOAD BEHAVIOR OF I-SHAPED COMPOSITE STEEL-CONCRETE SHEAR WALLS OF NUCLEAR POWER PLANTS

  • Ali, Ahmer;Kim, Dookie;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.89-98
    • /
    • 2013
  • In recent years steel-concrete composite shear walls have been widely used in enormous high-rise buildings. Due to high strength and ductility, enhanced stiffness, stable cycle characteristics and large energy absorption, such walls can be adopted in the auxiliary building; surrounding the reactor containment structure of nuclear power plants to resist lateral forces induced by heavy winds and severe earthquakes. This paper demonstrates a set of nonlinear numerical studies on I-shaped composite steel-concrete shear walls of the nuclear power plants subjected to reverse cyclic loading. A three-dimensional finite element model is developed using ABAQUS by emphasizing on constitutive material modeling and element type to represent the real physical behavior of complex shear wall structures. The analysis escalates with parametric variation in steel thickness sandwiching the stipulated amount of concrete panels. Modeling details of structural components, contact conditions between steel and concrete, associated boundary conditions and constitutive relationships for the cyclic loading are explained. Later, the load versus displacement curves, peak load and ultimate strength values, hysteretic characteristics and deflection profiles are verified with experimental data. The convergence of the numerical outcomes has been discussed to conclude the remarks.

크기효과가 고려된 철근콘크리트 휨 부재의 최소철근비 제안 (A Proposal of Minimum Steel Ratio Considering Size Effect for Flexural Reinforced Concrete Member)

  • 유성원;허윤
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.128-136
    • /
    • 2010
  • In according with concrete structural design standard, it is common designing flexure reinforcement concrete to induce tension failure. So reinforcing ratio is limited to inducing tension failure. And maximum reinforcing ratio is regulated to protecting concrete compression strength caused by over reinforced building. Minimum reinforcing ratio is also limited in designing standard to protecting brittle failure as extremely using less reinforcing bar. But in minimum reinforcing ratio it is extremely conservative or it is sometimes impossible to induce stable tension-failure because they are depending on yield failure and experienced method and concrete designing standard strength. Therefore the purpose of the present paper is to evaluate the flexural behavior of minimum steel ratio of reinforced concrete of beams and to propose the guide-line of equation of minimum steel ratio by performing static flexural test of 16 beams according to size effect, number of steel, yielding stress of steel, and concrete compressive strength which are presumed effective variables. From experimental results, the equation of minimum steel ratio was newly proposed considered size effect.

A load-bearing structural element with energy dissipation capability under harmonic excitation

  • Pontecorvo, Michael E.;Barbarino, Silvestro;Gandhi, Farhan S.;Bland, Scott;Snyder, Robert;Kudva, Jay;White, Edward V.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권3호
    • /
    • pp.345-365
    • /
    • 2015
  • This paper focuses on the design, fabrication, testing and analysis of a novel load-bearing element with energy dissipation capability. A single element comprises two von-Mises trusses (VMTs), which are sandwiched between two plates and connected to dashpots that stroke as the VMTs cycle between stable equilibrium states. The elements can be assembled in-plane to form a large plate-like structure or stacked with different properties in each layer for improved load-adaptability. Also introduced in the elements are pre-loaded springs (PLSs) that provide high initial stiffness and allow the element to carry a static load even when the VMTs cannot under harmonic disturbance input. Simulations of the system behavior using the Simscape environment show good overall correlation with test data. Good energy dissipation capability is observed over a frequency range from 0.1 Hz to 2 Hz. The test and simulation results show that a two layer prototype, having one soft VMT layer and one stiff VMT layer, can provide good energy dissipation over a decade of variation in harmonic load amplitude, while retaining the ability to carry static load due to the PLSs. The paper discusses how system design parameter changes affect the static load capability and the hysteresis behavior.