• Title/Summary/Keyword: Stabilizing materials

Search Result 128, Processing Time 0.026 seconds

Characterization of Electrochromic Properties of Au Nanoparticles Incorporated Poly (3, 4-ethylenedioxythiphene) Film (Au 나노입자가 함침된 Poly (3, 4-ethylenedioxythiphene) 고분자 박막의 전기변색 특성연구)

  • Lee, Jong-Seok;Koo, Kyoung-Hoe;Park, Hyung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.527-532
    • /
    • 2009
  • The electrochromic properties of Au nanoparticles (NPs) incorporating poly (3, 4-ethylenedioxythiphene) (PEDOT) film were investigated. Trisodium citrate was used for stabilizing Au NPs to control the size. The capping molecules of the Au nanoparticles were exchanged from citrate to 2-mercaptoethanol (2-ME). Water was removed by centrifuge and Au NPs were redispersed in methanol (MeOH). Finally, we obtained ca. 11.7 nm diameter of Au NPs. The effects of 0.15 at% of Au NPs incorporation on the optical, electrical, and eletrochromic properties of PEDOT films were investigated. The electrical property and switching speed of Au/PEDOT film was slightly improved over that of PEDOT film because Au NPs play a hopping site role and affect packing density of the PEDOT chain. Through the ultra violet-visible spectra of PEDOT and Au/PEDOT films at -0.7 V (vs Ag/AgCl), blue shift of maximum absorption peak was observed from PEDOT (585.4 nm) to Au/PEDOT (572.2 nm) due to a shortening of conjugated length of PEDOT. The Au NPs interfered with the degree of conjugation and the maximum absorption peak was shifted to shorter wavelength.

The evaluation of the compatibility of recycling melting slag from incinerator ashes as construction materials (소각재 용융슬래그의 건설재료로서 재활용시 적합성 평가)

  • 한영수;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.30-33
    • /
    • 2001
  • Melting is one of the most effective treatments for stabilizing heavy metals and also creates high value by-products. In this study, authors evaluated the leaching characteristics of heavy metals in melting slag obtained from incinerator ashes. In order to evaluate the environmental compatibility of the recycled melting slag, the samples analysed various leaching tests of heavy metals were raw incinerator ashes, melting slag and the construction materials recycled from melting slag. As the results: (1) The leaching concentrations of tile melting slag were lower than those of the raw incinerator ashes in the experiment performed in accordance with Korea Standard Leaching Test (KSLT). (2) The result of leaching test with the method of RG Min-StB 93. FGSV Forschungsgesellschaft fur Stra $\beta$ en- und Verkehrswesen) met the requirements in German. (3) The compressive strengths of mortar samples used for evaluating the feasibility of recycling the melting slag as construction materials also showed the suitable range for recycling (4) Melting slag was considered the stable materials with respect to the chemical stability against chemical solutions with various pH conditions.

  • PDF

Formation of Amorphous Oxide Layer on the Crystalline Al-Ni-Y Alloy

  • Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.173-176
    • /
    • 2013
  • The oxidation behavior of the crystallized $Al_{87}Ni_3Y_{10}$ alloy has been investigated with an aim to compare with that of the amorphous $Al_{87}Ni_3Y_{10}$ alloy. The oxidation at 873 K occurs as follows: (1) growth of an amorphous aluminum-yttrium oxide layer (~10 nm) after heating up to 873 K; and (2) formation of $YAlO_3$ crystalline oxide (~220 nm) after annealing for 30 hours at 873 K. Such an overall oxidation step indicates that the oxidation behavior in the crystallized $Al_{87}Ni_3Y_{10}$ alloy occurs in the same way as in the amorphous $Al_{87}Ni_3Y_{10}$ alloy. The simultaneous presence of aluminum and yttrium in the oxide layer significantly enhances the thermal stability of the amorphous structure in the oxide phase. Since the structure of aluminum-yttrium oxide is dense due to the large difference in ionic radius between aluminum and yttrium ions, the diffusion of oxygen ion through the amorphous oxide layer is limited thus stabilizing the amorphous structure of the oxide phase.

Antimicrobial Evaluation and Characterization of Copper Nanoparticles Synthesized by the Simple Chemical Method

  • Wazir, Arshad Hussain;Khan, Qudratullah;Ahmad, Nisar;Ullah, Faizan;Quereshi, Imdadullah;Ali, Hazrat
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.80-84
    • /
    • 2022
  • Copper nanoparticles (CuNPs) are considered of great importance due to their high catalytic and antimicrobial activities. This study focuses on the preparation and characterization of CuNPs, and on their antibacterial/antifungal activities. A copper salt (copper sulfate pentahydrate) as precursor, starch as stabilizing agent, and ascorbic acid as reducing agent were used to fabricate CuNPs. The resulting product was characterized via different techniques such as X-ray diffractrometry (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning electron microscopy (SEM) to confirm its characteristic properties. Employing the Scherrer formula, the mean crystallite sizes of copper (Cu) and cuprous oxide (Cu2O) nanocrystals were found to be 29.21 and 25.33 nm, respectively, as measured from the main X-ray diffraction peaks. The functional groups present in the resulting CuNPs were confirmed by FTIR. In addition, the engineered CuNPs showed antibacterial and antifungal activity against tested pathogenic bacterial and fungal strains.

Thermal stabilizing effect of Yb3+ Er3+ codoping into TiO2 powder prepared by sol-gel method and its upconversion characteristic (Yb3+ Er3+ ions 동시도핑에 의한 TiO2 분말의 열적 안정성 증가효과와 upconversion 특성 연구)

  • Eun, Jong-Won;Oh, Dong-Keun;Kim, Kwang-Jin;Hong, Tae-Ui;Jeong, Seong-Min;Choi, Bong-Geun;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.173-177
    • /
    • 2010
  • Thermal stabilizing effect of $Yb^{3+},\;Er^{3+}$ codoping into $TiO_2$ powder prepared by sol-gel method and its upconversion characteristics were analyzed. The effect of $TiO_2:Yb^{3+},\;Er^{3+}$ ions on crystallinity and phase transition was studied by X-ray diffraction (XRD). The change of band-gap energy induced from Yb and Er codoping was analyzed by UV-Vis. The band-gap energy of $TiO_2$ have been slightly narrowed by $Yb^{3+},\;Er^{3+}$ codoping, which indicated that the $Yb^{3+},\;Er^{3+}$ ions can enhance the photo-catalytic property of $TiO_2$. green and red up-conversions of $Yb^{3+}$ and $Er^{3+}$ co-doped $Y_2O_3:Yb^{3+},\;Er^{3+}$ phosphor were analyzed by PL equipped with 980 nm laser.

A Study on the Erosion Behavior of the Ceramic Sprayed Coating Layer in the Molten 55% Al-Zn (용융 55%Al-Zn 중에서 세라믹 용사 피막의 침식 거동에 관한 연구)

  • 강태영;임병문;최장현;김영식
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.51-59
    • /
    • 2000
  • Sink roll has been used in molten 55%Al-Zn alloy bath of continuous galvanizing line for sinking and stabilizing working steel strip in molten metal bath. In the process, the sink roll body inevitably build up dross compounds and pitting on the sink roll surface during 55%Al-Zn alloy coated strip production, and the life time of the sink roll is shorten by build up dross compounds and pitting. The present study examined the application of thermally sprayed ceramic coatings method on sink roll body for improving erosion resistance at molten 55% Al-Zn pool. In this experiment, the stainless steels such as STS 316L and STS 430F were used as the substrate materials. The CoNiCr and WE-Co powder were selected as bond coating materials. Moreover $Al_2O_3-ZrO_2-SiO_2 and ZrO_2-SiO_2$ powders selected as the top coating materials. Appearances of the specimens before and after dipping to molten 55%Al-Zn pool were compared and analyzed. As a result of this study, STS430F of substrate, WC-Co of bond spray coatings, $ZrO_2-SiO_2$ power of top spray coatings is the best quality in erosion resistance test at molten 55%Al-Zn pool

  • PDF

Laser Micro-machining Process-monitoring Technologies (레이저 미세가공 공정 요소 모니터링 기술)

  • Sohn, Hyon-Kee;Lee, Jae-Hoon;Hahn, Jae-Won;Kim, Ho-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.34-39
    • /
    • 2010
  • In order to achieve and maintain dimensional accuracy in laser micro-machining, dominant parameters such as laser power and laser focus position need to be monitored and controlled real time. Also, in order to selectively machine multi-layered materials, the material being presently machined need to be recognized. This paper presents an auto-focusing (AF) module to keep laser focus on a large-area surface; a real-time laser power stabilizing module based on optical attenuation; and a laser-induced breakdown spectroscopy (LIBS) module. With these monitoring modules, position error in laser focus on a 4" silicon wafer was kept below $4{\mu}m$, initially $51{\mu}m$, and laser power stability of a UV laser source was improved from 1.6% to 0.3%. Also, the material transition from polyimide to copper in machining of FCCL (flexible copper clad laminate) was successfully observed.

Effect of Fe Content on Mechanical and Electrochemical Properties of Ti-Mo-Fe Alloys (Ti-Mo-Fe 합금의 Fe 함량에 따른 기계적 특성과 전기화학적 특성 비교·분석)

  • Ji-Won Kim;Jeong-Yeon Park;Min Gang;Ji-Hwan Park;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.145-152
    • /
    • 2023
  • β titanium alloys containing β stabilizing elements such as V, Nb, Ta, Mo and Fe are widely used etc, due to their excellent specific strength, corrosion resistance, fatigue strength and easy formability. New metastable β titanium alloys are developed containing low-cost elements (Mo and Fe) in this study. Fe element is a strong β-stabilizer which can affect the mechanical and electrochemical properties of Ti-5Mo-xFe (x = 1, 4 wt%) alloys. These properties were analyzed in connection with microstructure and phase distribution. Ti-5Mo-4Fe alloy showed higher compression yield stress and maximum stress than Ti-5Mo-1Fe alloy due to solid-solution hardening and grain refinement hardening effect. As Fe element increased, Fe oxide formation and reduction of ${\bar{Bo}}$ (bond order) value affect the decrease of corrosion resistance. Ti-5Mo-xFe alloys were more excellent than Ti-6Al-4V ELI alloy.

Investigation on Optical Properties of Natural Brown Diamonds with Various Types by High Pressure and High Temperature Treatment

  • Bai, Jong-Hyuck;Seo, Jin-Gyo;Shon, Shoo-Hack;Ahn, Yong-Kil;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.278-288
    • /
    • 2010
  • High Pressure High Temperature (HPHT) treatment can significantly change the color of diamonds. We studied the variation of the optical properties according to the nitrogen arrangement in natural brown diamonds of various types (type IaAB, type IaB, type IaA > B, type IaA < B, IaA = B) after HPHT treatment. The diamonds with different arrangements of nitrogen were annealed at temperatures in the range $1700-1800^{\circ}C$ under a stabilizing pressure of 5 GPa. HPHT treated samples were analyzed using UV-Vis-NIR, FT-IR, and PL spectroscopy. The absorption and luminescence spectra were measured to compare the variations of nitrogen arrangement in the natural brown diamonds before and after HPHT treatment. After HPHT treatment, the brown coloration in all types of diamonds was reduced and a decrease in the peaks related to the A-aggregate of nitrogen was more predominant than the B-aggregate. Furthermore, the peaks related to N3 (415.4 nm), H4 (496.4 nm), and platelet decreased and the peaks related to H3 (503.2 nm) and G-band increased after HPHT treatment. In conclusion, spectroscopic analysis of natural brown diamonds after HPHT treatment showed that a yellow color was produced by absorption in the H3 centers and a green color was generated by interaction between absorptions of the H3 and H2 centers.

Triple Matrix Capsulation having Visible Effects and Stabilizing Functions

  • Kim, In-Young;Seong, Bo-Reum;Lee, Min-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.326-329
    • /
    • 2015
  • This study is to develop the double capsulation technology in order to increase the conservativeness and stability of unstable materials such as vitamins, polyphenols, natural active ingredients. And also, best way of triple matrix capsulation using natural polymers were detail described. As the first capsulation with w/o/w (water-in-oil-in-water) emulsifying system, our study group was especially made to soft and moisture cream using 5wt% of sucrose ester emulsifier as first capsulation. Nutrient agents are squalane, camellia oil. Triple matrix capsulation was formed with the best stabilized bead type capsules when it blended of chitosan, algin, sodium-potassium alginate. The bead diameter size was about 2.0~4.5mm (mean diameter: 3.2mm). Activity of lactobacillus containing cream for depending on various pH variations showed that alkalinity ($pH=10.8{\pm}0.5$) condition was higher than acidity ($pH=4.2{\pm}0.2$) and neutrality ($pH=7.1{\pm}0.3$) conditions. After a month, it also was certified to the activity of lactobacillus in incubated at $37{\pm}1^{\circ}C$ in culture medium. As application of food industry, we developed the containing lactobacillus capsule and 7 colored kinds of double and triple matrix capsulation in yogurt cream and active ingredients. As for above mentioned those results, one of tool to stabilize the living lactobacillus, doubled matrix capsulation greatly be expected to contribute to food industry. Furthermore, it can be expected to apply the drug delivery system (DDS) to active ingredients of stabilizing technologies at drug, pharmaceutical division and cosmetic industry, etc.