• Title/Summary/Keyword: Stabilize reversal

Search Result 4, Processing Time 0.02 seconds

Treatment Approach of Instable Scapular by Proprioceptive Neuromuscular Facilitation (고유수용성 신경근 촉진법에 의한 견갑골 불안정 치료 접근)

  • Bae, Sung-Soo;Kim, Sang-Soo;Kim, Soo-Min;Kim, Mi-Hyun;Kim, Sik-Hyun
    • PNF and Movement
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Objective : The purpose of this study was conducted to find scapular movement instability related with shoulder complex and provide strengthening the scapular muscles with proprioceptive neuromuscular facilitation(PNF). Methods : This is a literature study with books and articles, seminar note and book for PNF international course. Results : The scapular serve as the platform for humeral motions. The scapulothoracic articulation is stabilized and controlled, in part, by the scapular muscles. Therefore, if scapular muscle function is altered, then dysfunctional scapulothoracic kinematics may result. Strengthening exercise for scapular muscles are a common part of rehabilitation programs designed for patients with scapular instability. Conclusion : Treatment of the scapular instability is provided. It is that treatment with combination of isotonic, stabilize reversal on different patient's positions.

  • PDF

Numerical result of complex quick time behavior of viscoelastic fluids in flow domains with traction boundaries

  • Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.211-219
    • /
    • 2007
  • Here we demonstrate complex transient behavior of viscoelastic liquid described numerically with the Leonov model in straight and contraction channel flow domains. Finite element and implicit Euler time integration methods are employed for spatial discretization and time marching. In order to stabilize the computational procedure, the tensor-logarithmic formulation of the constitutive equation with SUPG and DEVSS algorithms is implemented. For completeness of numerical formulation, the so called traction boundaries are assigned for flow inlet and outlet boundaries. At the inlet, finite traction force in the flow direction with stress free condition is allocated whereas the traction free boundary is assigned at the outlet. The numerical result has illustrated severe forward-backward fluctuations of overall flow rate in inertial straight channel flow ultimately followed by steady state of forward flow. When the flow reversal occurs, the flow patterns exhibit quite complicated time variation of streamlines. In the inertialess flow, it takes much more time to reach the steady state in the contraction flow than in the straight pipe flow. Even in the inertialess case during startup contraction flow, quite distinctly altering flow patterns with the lapse of time have been observed such as appearing and vanishing of lip vortices, coexistence of multiple vortices at the contraction comer and their merging into one.

The Effect of Proprioceptive and Vestibular Sensory Input on Expression of BDNF after Traumatic Brain Injury in the Rat (고유감각과 전정감각 입력이 외상성 뇌손상 쥐의 BDNF 발현에 미치는 영향)

  • Song, Ju-Min
    • PNF and Movement
    • /
    • v.4 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Purpose : The purposes of this study were to test the effect of proprioceptive and vestibular sensory input on expression of BDNF after traumatic brain injury in the rat. Subject : The control group was sacrificed at 24 hours after traumatic brain injury. The experimental group I was housed in standard cage for 7 days. The experimental group II was housed in standard cage after intervention to proprioceptive and vestibular sensory(balance training) for 7 days. Method : Traumatic brain injury was induced by weight drop model and after operation they were housed in individual standard cages for 24 hours. After 7th day, rats were sacrificed and cryostat coronal sections were processed individual1y in goat polyclonal anti-BDNF antibody. The morphologic characteristics and the BDNF expression were investigated in injured hemisphere section and contralateral brain section from immunohistochemistry using light microscope. Result : The results of this experiment were as follows: 1. In control group, cell bodies in lateral nucleus of cerebellum, superior vestibular nucleus, purkinje cell layer of cerebellum and pontine nucleus changed morphologically. 2. The expression of BDNF in contralateral hemisphere of group II were revealed. 3. On 7th day after operation, immunohistochemical response of BDNF in lateral nucleus, superior vestibular nucleus, purkinje cell layer and pontine nucleus appeared in group II. Conclusion : The present results revealed that intervention to proprioceptive and vestibular sensory input is enhance expression of BDNF and it is useful in neuronal reorganization improvement after traumatic brain injury.

  • PDF

The Effects of the Surfactant Type on the Nanofluids Stability (계면활성제 특성에 따른 나노입자 분산안정도 향상 연구)

  • Kang, Chi-Hoon;Hong, Sung-Wook;Kang, Yong-Tae;Koo, June-Mo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.275-280
    • /
    • 2008
  • The effects of the surfactant type, i.e., CTAB(cationic), SDS(anionic), and GA(polymeric), on the stability of 0.1 vol.% $Al_2O_3$ nanofluids were investigated. The changes in size and zeta potential of nanoparticles in nanofluids with pH, surfactant concentration, and time were experimentally observed. The nanofluids adding CTAB, which ionizes of the same charge with the bare particle surface, was found to have the best stability regardless of the surfactant concentration, whereas those with SDS became unstable under low surfactant concentration conditions, i.e. lower than the critical micellel concentration(CMC), before the charge reversal occurred. With higher SDS concentration over CMC, they became stable. Gum Arabic, which had been used often to stabilize the nanofluids, was also tested. In result, it was found that the type and concentration of surfactants to add should be selected considering pH and the sign of the bare particle surface charge.

  • PDF