• Title/Summary/Keyword: Stability of $O_3$

Search Result 1,792, Processing Time 0.03 seconds

Fabrication of shape-controlled Au nanoparticle arrays for SERS substrates

  • Shin, Seon Mi;Choi, Kyeong Woo;Ye, Seong Ji;Kim, Young Yun;Park, O Ok
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.139-149
    • /
    • 2014
  • Surface enhanced Raman Scattering (SERS) has attracted attention because the technique enables detection of various chemicals, even down to single molecular scale. Among the diverse candidates for SERS substrates, Au nanoparticles are considered promising due to their fine optical properties, chemical stability and ease of surface modification. Therefore, the fabrication and optical characterization of gold particles on solid supports is highly desirable. Such structures have potential as SERS substrates because the localized surface plasmon resonance of gold nanoparticles is very sensitive to combined molecules and environments. In addition, it is well-known that the properties of Au nanoparticles are strongly dependent on their shape. In this work, arrays of shape-controlled Au nanoparticles were fabricated to exploit their enhanced and reproducible optical properties. First, shape-controlled Au nanoparticles were prepared via seed mediated solution-phase synthesis, including spheres, octahedra, and rhombic dodecahedra. Then, these shape-controlled Au nanoparticles were arranged on a PDMS substrate, which was nanopatterned using soft lithography of poly styrene particles. The Au nanoparticles were selectively located in a pattern of hexagonal spheres. In addition, the shape-controlled Au nanoparticles were arranged in various sizes of PDMS nanopatterns, which can be easily controlled by manipulating the size of polystyrene particles. Finally, the optical properties of the fabricated Au nanoparticle arrays were characterized by measuring surface enhanced Raman spectra with 4-nitrobenezenethiol.

THE BRIGHT PART OF THE LUMINOSITY FUNCTION FOR HALO STARS

  • Lee, Sang-Gak
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.139-146
    • /
    • 1995
  • The bright part of the halo luminosity function is derived from a sample of the 233 NLTT propermotion stars, which are selected by the 220 km/ see of cutoff velocity in transverse to rid the contamination by the disk stars and corrected for the stars omitted in the sample by the selection criterion. It is limited to the absolute magnitude range of $M_v=4-8$, but is based on the largest sample of halo stars up to now. This luminosity function provides a number density of $2.3{\cdot}10^{-5}pc^{-3}$ and a mass density of $2.3{\cdot}10^{-5}M_{o}pc^{-3}$ for 4 < $M_v$ < 8 in the solar neighborhood. These are not sufficient for disk stability. The kinematics of the sample stars are < U > = - 7 km/sec, < V > = - 228 km/sec, and < W > = -8 km/sec with (${\sigma_u},{\sigma_v},{\sigma_w}$) = (192, 84, 94) km/sec. The average metallicity of them is [Fe/H] = $- 1.7{\pm}0.8$. These are typical values for halo stars which are selected by the high cutoff velocity. We reanalyze the luminosity function for a sample of 57 LHS proper-motion stars. The newly derived luminosity function is consistent with the one derived from the NLTT halo stars, but gives a somewhat smaller number density for the absolute magnitude range covered by the LF from NLTT stars. The luminosity function based on the LHS stars seems to have a dip in the magnitude range corresponding to the Wielen Dip, but it also seems to have some fluctuations due to a small number of sample stars.

  • PDF

Manufacture of the Prealloyed Powder for Powder Metallurgy by the Ion-diffusion Process (이온확산법에 의한 분말야금용 합금강분의 제조)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Na, Jae-Hun;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.206-213
    • /
    • 1998
  • Cu, Ni, and Mo were ion-diffused into the pure steel powder in the aqueous solution of $(CuNO_3)_2$, $Ni(NO_3)_2)_2$, and $(NH_4)_6Mo_7O_{24}$, to form partial diffusion bond prealloyed steel powder. The mechanical properties, and compacting and sintering characteristics were investigated as a function of Cu. Ni and Mo contents. The results of the this research, it was found that the smallest change of size was observed, and the good degree of hardness and tensile strength was observed when 1.50wt%Cu, 1.75wt%Ni and 0.50wt%Mo was added each other. The powder metallurgy characteristics of partial diffusion bond prealloyed steel powder containing 1.50wt% of Cu, 1.75wt% of Ni and 0.5wt% of Mo were compared to those of distalloy $AB\textregistered$ which was manufactured in Hogani Corporation of Sweden. Partial diffusion bond prealloyed steel powder of this study had good degree of hardness and density, and its dimensional stability was same to that of pure steel powder. Under the same sintering density and temperature, the tensile strength of the ion powder from this research was $15~20Kg/\textrm{mm}^2$ larger than that of distalloy AB'. also the hardness was larger in the magnitude of Hv20-30. When the powder metallurgy heat-treated, hardness and tensile strength were substantially increased.

  • PDF

Effect of Molten Salt Coating on Heat Papers (용융염 코팅이 열지에 미치는 영향)

  • Im, Chae-Nam;Lee, Jungmin;Kang, Seung-Ho;Cheong, Hae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.528-534
    • /
    • 2014
  • Thermal batteries are primary reserve batteries that use inorganic salt as electrolytes which are inactive at room temperature. The two principal heat sources that have been used in thermal batteries are heat paper and heat pellets. As soon as the heat paper, which is ignited by the initiator, in turn ignites the heat pellets, all the solid electrolytes are melted into excellent ionic conductors. However, the high combustion temperature by heat papers in thermal batteries causes thermal decomposition at the cathode, eventually leading to a thermal runaway. In this paper, we have attempted to prepare $Zr/BaCrO_4$ heat papers coated with KCl molten salt. We have also investigated the effect of a molten salt coating on the heat papers through the thermal characteristics such as calorimetric value, combustion temperature and burning rate. The calorimetric value and combustion temperature of heat papers were reduced with an increase in the molten salt coating. As a result, the molten salt coating on heat papers greatly reduced risk of a thermal runaway and improved the stability of thermal batteries.

Effects of momentum ratio and mixture ratio on combustion efficiency in liquid rocket engine (액체로켓에서의 운동량비와 혼합비가 연소성능에 미치는 영향)

  • Han, J.S.;Kim, S.J.;Kim, S.G.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.38-43
    • /
    • 1999
  • An experimental study was carried out, in order to set up the procedure for evaluation of hot fire test, to investigate the effect of mixture on combustion performance and combustion stability , and to determine the optimum design condition for designing the liquid rocket engine. $HNO_3$/Kerosene uni-element liquid rocket engine(thrust 24 $\iota{b}_f$, chamber pressure 200 psia) using impinging streams doublet injector was designed, and ground hot-fire test was carried out. To prevent or reduce the hard start during ignition period, two step ignition method was used. This was accomplished by maintaining about 25% of the designed operating pressure doting transient period, then chamber pressure was built up to the designed operating pressure. Maximum combustion efficiency was at O/F ratio 3.6, and combustion efficiency is decreased with increasing momentum ratio.

  • PDF

The effects of music therapy on vital signs and pulsatile oxygen saturation of pediatric intensive care unit children (음악을 이용한 간호중재가 중환자실 환아의 활력징후와 산소포화도에 미치는 영향)

  • Yoo Cheong-Suk;Song Kei-Hee
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.6 no.3
    • /
    • pp.382-396
    • /
    • 1999
  • This study was attempted to prove the effect of emotional stability and vital signs applying music therapy program to the children admitted in the PICU. Data were collected from July to September, 1997. The subjects were 30 patients admitted in the PICU of 'S' University Hospital which were divided into two groups of experimental and control. Each group had 15 subjects. Method was nonequivalent control group pretest-postteset repeated design, observing vital signs and activity of subjects prior, during, and after the music intervention. The study tools were cassette tapes of 'Mother's music whose babies want to listen' and Space-lab patient monitor. Data were analyzed using the $SPSS/PC+;x^2$ test and t-test to analyze of the general characteristics ; paired t-test to prove hypotheses. Result were as follows; 1. Infants lower than seven months showed changing into stable vital signs from applying the music therapy, however infants from eight months to three-year old showed no change in vital signs. 2. Vital signs changed to stabilized condition in infants lower than seven months were heart rate and respiration rate. 3. The stability of vital signs during music therapy turned back to the previous state while terminating music therapy. 4. The effect of music therapy in the state of activity had on both infants group of lower than seven months and from eight months to three-year old, particularly more effective in the later group. I recommend follows on the base of above results ; 1. As above results shows, listening to music is effective on infants and toddler, intervention with music therapy appropriate to chidlren's age is hot recommended. 2. Comparative study with noise blocking effect and music therapy effect within the ICU environment be recommended. 3. The repeated study on when the exact time is and how many repeat the music therapy to show the above mentioned effect be recommended. 4. We recommend this music therapy to be done in the recovery room, isolating room, operating room as well as ICU.

  • PDF

Comparison of the As(III) Oxidation Efficiency of the Manganese-coated Sand Prepared With Different Methods (망간코팅사 종류별 독성 3가 비소의 산화특성에 관한 비교 연구)

  • Kim, Byeong-Kwon;Lim, Jae-Woo;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.62-69
    • /
    • 2008
  • In this study physicochemical characteristics and stability of various manganese coated sands (MCS) prepared with different methods were evaluated. In addition, removal efficiencies of As(III) by each MCS were compared. Four different MCSs were used; B-MCS prepared by baking method, W&D-MCS prepared by wetting and dry method, NMCS prepared during the water treatment process and Birm which is a commercial MCS widely used for the removal iron and manganese. The manganese content in each MCS was following order: Birm (63,120 mg/kg) > N-MCS (10,400 mg/kg) >W&D-MCS (5,080 mg/kg) > B-MCS (2,220 mg/kg). Birm showed the least solubility (% basis) in acidic conditions. As(III) oxidation efficiency of B-MCS was continuously increased as the solution pH decreased. While As(III) oxidation efficiency of N-MCS and Birm was minimum around neutral pH. The increased As(III) oxidation efficiency above neutral pH for N-MCS and Birm could be due to the competitive adsorption of $Mn^{2+}$, which was produced from reduction of $MnO_2$, onto the surface of aluminum and manganese oxides.

Study on Heat-Loss-Induced Self-Excitation in Laminar Lifted Jet Flames (층류제트 부상화염에서 열손실에 의한 자기진동에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo;Bae, Dae-Seok;Yun, Jin-Han;Keel, San-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • We experimentally investigated lifted propane jet flames diluted with nitrogen to obtain flame-stability maps based on heat-loss-induced self-excitation. We found that heat-loss-induced self-excitations are caused by conductive heat loss from premixed flame branches to trailing diffusion flames as well as soot radiation. The conductive-heat-loss-induced self-excitation at frequencies less than 0.1 Hz is explained well by a suggested mechanism, whereas the oscillation of the soot region induces a self-excitation of lift-off height of the order of 0.1 Hz. The suggested mechanism is also verified from additive experiments in a room at constant temperature and humidity. The heat-loss-induced self-excitation is explained by the Strouhal numbers as a function of the relevant parameters.

Studies on the Frost Heave Revelation and Deformation Behaviour due to Thawing of Weathered Granite Soils (화강암 풍화토의 동상 발현 및 융해에 따른 변형 거동에 관한 연구)

  • 류능환;최중대;류영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.61-71
    • /
    • 1995
  • Natural ground is a composite consisted of the three phases of water, air and soil paircies. Among the three components, water as a material is weU understood but soil particles are not in foundation engineering. Especially, weathered granite soil generally shows a large volumetric expansion when they freeze. And, the stability and durability of the soil have shown decreased with repetitive freezing and thawing processes. These unique charcteristics may cause various construction and management problems if the soil is used as a construction material and foundation layers. This project was initiated to investigate the soil's physical and engineering characteristics resulting from freezing and freezing-thawing processes. Research results may be used as a basic data in solving various problems related to the soil's unique characteristics. The following conclusions were obtained: The degree of decomposition of weathered granite soil in Kangwon-do was very different between the West and East sides of the divide of the Dae-Kwan Ryung. Soil particles distributed wide from very coarse to fine particles. Consistency could be predicted with a function of P200 as LL=0.8 P200+20. Permeability ranged from 10-2 to 10-4cm/sec, moisture content from 15 to 20% and maximum dry density from 1.55 to 1.73 g /cmΥ$^3$ By compaction, soil particles easily crushed, D50 of soil particles decreased and specific surface significantly increased. Shear characteristics varied wide depending on the disturbance of soil. Strain characteristics influenced the soil's dynamic behviour. Elastic failure mode was observed if strain was less than 1O-4/s and plastic failure mode was observed if strain was more than 10-2/s. The elastic wave velocity in the soil rapidly increased if dry density became larger than 1.5 g /cm$^3$ and these values were Vp=250, Vg= 150, respectively. Frost heave ratio was the highest around 0 $^{\circ}C$ and the maximum frost heave pressure was observed when deformation ratio was less than 10% which was the stability state of soil freezing. The state had no relation with frost depth. Over freezing process was observed when drainage or suction freezing process was undergone. Drainage freezing process was observed if freezing velocity was high under confined pressure and suction frost process was occurred if the velocity was low under the same confined process.

  • PDF

Solid Electrolyte Composed of Poly(vinyl alcohol) and Oligo(3,4-ethylenedioxythiophene) Having a Crosslinked Structure (가교 구조를 갖는 poly(vinyl alcohol)과 oligo(3,4-ethylenedioxy-thiophene)으로 이루어진 고체 전해질)

  • Gyo Jun Song;Min Su Kim;Nam-Ju Jo
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.303-308
    • /
    • 2024
  • Currently, lithium secondary batteries have been used as medium- or large-sized energy sources such as electric vehicles and energy storage system (ESS) due to their high energy and eco-friendly characteristics. Currently commercialized lithium secondary batteries do not fully meet the demands for high energy density and safety. Many studies on solid electrolytes are being conducted to satisfy these requirements. In order to commercialize a solid electrolyte, it is important to supplement the low ion conductivity and high interface resistance with an electrode compared to the organic liquid electrolyte. Therefore, in this study, oligo(3,4-ethylenedioxythiophene (EDOT)) is added to poly(vinyl alcohol) (PVA), which is a polymer matrix with ion conductivity and sticky characteristics, to decrease the interfacial resistance with the same type of polythiophene (PTh)-based electrode. In addition, the addition of porous silicon dioxide (SiO2) filler improves lithium salt dissociation ability and increases ionic conductivity. And the electrochemical stability of the solid electrolyte, which has been lowered due to additives, is improved by introducing a cross-linked structure using boric acid (BA).