• 제목/요약/키워드: Stability bound

검색결과 296건 처리시간 0.022초

침투력을 고려한 토사터널 막장의 안정성 평가방법에 대한 고찰 (Evaluation of Tunnel Face Stability with the Consideration of Seepage Forces)

  • 남석우;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.193-200
    • /
    • 1999
  • Since Broms and Bennermark(1967) suggested the face stability criterion based on laboratory extrusion tests and field observations, the face stability of a tunnel driven in cohesive material has been studied by several authors. And recently, more general solution for the tunnel front is given by Leca and Panet(1988). They adopted a limit state design concept to evaluate the face stability of a shallow tunnel driven into cohesionless material and showed that the calculated upper bound solution represented the actual behavior reasonably well. In this study, two factors are simultaneously considered for assessing tunnel face stability: One is the effective stress acting on the tunnel front calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady state ground water flow. The model tests were performed to evaluate the seepage force acting on the tunnel front and these results were compared with results of numerical analysis. Consequently, the methodology to evaluate the stability of a tunnel face including limit analysis and seepage analysis is suggested under the condition of steady state ground water flow.

  • PDF

AN EASILY CHECKING CONDITION FOR THE STAVILITY TEST OF A FAMILY OF POLYNOMIALS WITH NONLIMEARLY PERTURBED COEFFICIENTS

  • Kim, Young-Chol;Hong, Woon-Seon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.5-9
    • /
    • 1995
  • In many cases of robust stability problems, the characteristic polynomial has real coefficients which or nonlinear functions of uncertain parameters. For this set of polynomials, a new stability easily checking algorithm for reducing the conservatism of the stability bound are given. It is the new stability theorem to determine the stability region just in parameter space. Illustrative example show that the presented method has larger stability bound in uncertain parameter space than others.

  • PDF

시변 지연시간을 갖는 이산 구간 시변 시스템의 시변 불확실성의 안정범위 (Stability Bound for Time-Varying Uncertainty of Time-varying Discrete Interval System with Time-varying Delay Time)

  • 한형석
    • 한국항행학회논문지
    • /
    • 제21권6호
    • /
    • pp.608-613
    • /
    • 2017
  • 본 논문에서는 시변 지연시간이 있는 선형 이산 구간 시변 시스템의 지연 상태변수에 존재하는 불확실성 안정범위에 관한 것을 다룬다. 고려된 시스템은 지연 없는 상태변수에 대한 시스템 행렬이 구간범위에서 시변으로 변동하고, 지연 시간이 구간범위 내에서 시변인 지연 상태변수에 대하여 비구조화된 불확실성이 시변으로 존재하는 시스템이다. 기존의 많은 연구들이 시변에 대한 부분을 고려하지 못하고 시불변 경우에 대하여 얻어진 것에 반하여, 본 논문에서는 모든 요소를 시변으로 고려하여 새로운 안정범위를 도출하였다. 새로운 안정범위는 적용 가능한 시스템에 대한 제한이 없는 것으로 그 효용성이 기존의 결과 보다 우수하다. 제안된 범위는 복잡한 선형행렬부등식 혹은 리아프노프 방정식의 상한 해 한계를 이용하는 복잡한 과정이 필요하지 않다. 수치예제를 통하여 제안된 결과가 기존의 결과들을 포함할 수 있음을 보이고, 이들 보다 확장성과 효용성이 우수함을 확인한다.

Design of T-S(Takagi-Sugeno) Fuzzy Control Systems Under the Bound on the Output Energy

  • Kim, Kwang-Tae;Joh, Joog-Seon;Kwon, Woo-Hyen
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.44-49
    • /
    • 1999
  • This paper presents a new T-S(Tae-Sugeno) fuzzy controller design method satisfying the output energy bound. Maximum output energy via a quadratic Lyapunov function to obtain the bound on output energy is derived. LMI(Linear Matrix Inequality) problems which satisfy an output energy bound for both of the continuous-time and discrete-time T-S fuzzy control system are also derived. Solving these LMIs simultaneously, we find a common symmetric positive definite matrix P which guarantees the global asymptotic stability of the system and stable feedback gains K's satisfying the output energy bound. A simple example demonstrates validity of the proposed design method.

  • PDF

제한된 부채꼴에서의 비선형 개념을 이용한 퍼지 논리제어기의 안정성 해석 (Stability analysis of fuzzy logic controller using the concept of sector bound nonlinearity)

  • 김인익;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.573-578
    • /
    • 1991
  • A stability analysis technique has been proposed for linear SISO system associated with fuzzy logic controller. An analysis technique using the concept of well-known sector bound nonlinearity and its graphical interpretation, i.e., the circle criterion, is presented. Thus the use of classical Nyquist locus and the BODE diagram is brought into the picture. The aim of this present note is to represent a graphical approach based on sector bound nonlinearity and circle criterion for assessing the performance(degree of stability) of the linear SISO system associated with fuzzy logic controller. The degree of stability of the system is defined in terms of its gain and phase margins as defined in Section 3.

  • PDF

시변 섭동의 안정범위에 관한 연구 (A study on stability bounds of time-varying perturbations)

  • 김병수;한형석;이장규
    • 제어로봇시스템학회논문지
    • /
    • 제3권1호
    • /
    • pp.17-22
    • /
    • 1997
  • The stability robustness problem of linear discrete-time systems with time-varying perturbations is considered. By using Lyapunov direct method, the perturbation bounds for guaranteeing the quadratic stability of the uncertain systems are derived. In the previous results, the perturbation bounds are derived by the quadratic equation stemmed from Lyapunov method. In this paper, the bounds are obtained by a numerical optimization technique. Linear matrix inequalities are proposed to compute the perturbation bounds. It is demonstrated that the suggested bound is less conservative for the uncertain systems with unstructured perturbations and seems to be maximal in many examples. Furthermore, the suggested bound is shown to be maximal for the special classes of structured perturbations.

  • PDF

시변 시간지연을 갖는 대규모 불확정성 선형 시스템의 강인 안정성 (Robust Stability of Large-Scale Uncertain Linear Systems with Time-Varying Delays)

  • 김재성;조현철;이희송;김진훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.463-465
    • /
    • 1998
  • In this paper, we consider the problem of robust stability of large-scale uncertain linear systems with time-varying delays. The considered uncertainties are both unstructured uncertainty which is only known its norm bound and structured uncertainty which is known its structure. Based on Lyapunov stability theorem and $H_{\infty}$ theory. we present uncertainty upper bound that guarantee the robust stability of systems. Especially, robustness bound are obtained directly without solving the Lyapunov equation. Finally, we show the usefulness of our results by numerical example.

  • PDF

Robust Stability Condition and Analysis on Steady-State Tracking Errors of Repetitive Control Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.960-967
    • /
    • 2008
  • This paper shows that design of a robustly stable repetitive control system is equivalent to that of a feedback control system for an uncertain linear time-invariant system satisfying the well-known robust performance condition. Once a feedback controller is designed to satisfy the robust performance condition, the feedback controller and the repetitive controller using the performance weighting function robustly stabilizes the repetitive control system. It is also shown that we can obtain a steady-state tracking error described in a simple form without time-delay element if the robust stability condition is satisfied for the repetitive control system. Moreover, using this result, a sufficient condition is provided, which ensures that the least upper bound of the steady-state tracking error generated by the repetitive control system is less than or equal to the least upper bound of the steady-state tracking error only by the feedback system.

Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis

  • Khezri, Nima;Mohamad, Hisham;Fatahi, Behzad
    • Geomechanics and Engineering
    • /
    • 제11권4호
    • /
    • pp.471-492
    • /
    • 2016
  • Underground tunnelling is one of the sustainable construction methods which can facilitate the increasing passenger transportation in the urban areas and benefit the community in the long term. Tunnelling in various ground conditions requires careful consideration of the stability factor. This paper investigates three dimensional stability of a shallow circular tunnel in a layered soil. Upper bound theorem of limit analysis was utilised to solve the tunnel face stability problem. A three dimensional kinematic admissible failure mechanism was improved to model a layered soil and limiting assumptions of the previous studies were resolved. The study includes calculation of the minimum support pressure acting on the face of the excavation in closed-face excavations. The effects of the characteristics of the layers on the minimum support pressure were examined. It was found that the ratio of the thickness of cover layers particularly when a weak layer is overlying a stronger layer, has the most significant influence on the minimum tunnel support pressure. Comparisons have been made with the results of the numerical modelling using FLAC3D software. Results of the current study were in a remarkable agreement with those of numerical modelling.

불확실성의 Fredholm 적분 수식화를 통한 적응가변구조제어기 설계 (Design of an Adaptive Variable Structure Control using Fredholm Integral Formulae for the Uncertainties)

  • 유동상
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.658-663
    • /
    • 2003
  • In deterministic design of feedback controllers for uncertain dynamic systems, the upper bound of the uncertainty is very important to guarantee the stability of the closed loop system. In this paper, we assume that the upper bound of the uncertainty is formulated using a Fredholm integral equation of the first kind, that is, an integral of the product of a predefined kernel with an unknown influence function. We propose an adaptation law that is capable of estimating this upper bound. Using this adaptive upper bound, we design an adaptive variable structure control (AVSC), which guarantees asymptotic stability/ultimate boundedness of uncertain dynamic systems. The illustrative example shows the proposed AVSC is effective for uncertain dynamic systems.