• Title/Summary/Keyword: Stability and deformation analysis method

Search Result 236, Processing Time 0.022 seconds

Stability and Deformation Analysis Considering Discontinuities in Rock Mass (불연속면을 고려한 암반의 안정변형해석)

  • Hwang, Jae-Yun
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • Rock mass includes such discontinuities as fault, joint, bedding, crack, schistosity, cleavage. The rock mass behavior, therefore, is influenced by the discontinuity behavior. In this study, a stability and deformation analysis method considering discontinuities in rock mass is proposed, and then applied to the rock collapse disaster site. As the method, the stability analysis by the stereographic projection method was carried out in an actual site, the deformation analysis program by the finite element method including the joint element was developed, and performed. To demonstrate the applicability of this developed stability and deformation analysis method considering discontinuities in rock mass, the analysis results are examined and compared with the failure behavior at the rock mass.

Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation

  • Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • In the present study, a spline finite strip with higher-order shear deformation is formulated for the stability and free vibration analysis of composite plates. The analysis is conducted based on Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model and Cho's higher-order zigzag laminate theory. Consequently, the shear correction coefficients are not required in the analysis, and an improved accuracy for thick laminates is achieved. The numerical results, based on different shear deformation theories, are presented in comparison with the three-dimensional elasticity solutions. The effects of length-to-thickness ratio, fibre orientation, and boundary conditions on the critical buckling loads and natural frequencies are investigated through numerical examples.

Modeling the Water-Block Interaction with Discontinuous Deformation Analysis Method (불연속 변형 해석법에 의한 지하수-암반블록 상호작용 모델링)

  • 김용일
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.149-157
    • /
    • 1999
  • A powerful numerical method that can be used for that purpose is the Discontinuous Deformation Analysis (DDA) method developed by Shi in 1988. In this method, rock masses are treated as systems of finite and deformable blocks. Large rock mass deformations and block movements are allowed. Although various extensions of the DDA method have been proposed in the literature, the method is not capable of modeling water-block interaction that is needed when modeling surface or underground excavation in fractured rock. This paper presents a new extension to the DDA method. The extension consists of hydro-mechanical coupling between rock blocks and water flow in fractures. A example of application of the DDA method with the new extension is presented. The results of the present study indicate that fracture flow could have a destabilizing effect on the tunnel stability.

  • PDF

Stability of the porous orthotropic laminated composite plates via the hyperbolic shear deformation theory

  • Ferruh Turan
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.145-161
    • /
    • 2023
  • This study investigates the influences of porosity on the stability of the orthotropic laminated plates under uniaxial and biaxial loadings based on the hyperbolic shear deformation theory. Three different porosity distribution are considered with three specific functions through the plate thickness. The stability equations of porous orthotropic laminated plates are derived by the virtual work principle. Applying the Galerkin method to partial differential equations, the critical buckling load relation of porous orthotropic laminated plates is obtained. After validating the accuracy of the proposed formulation in accordance with the available literature, a parametric analysis is performed to observe the sensitivity of the critical buckling load to shear deformation, porosity, orthotropy, loading factor, and different geometric properties.

Dynamic Analysis of a Cantilever Beam with the Parametric Exitation in Rotation (회전 방향으로 매개 가진하는 외팔보의 동적 해석)

  • 임형빈;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.335-340
    • /
    • 2001
  • Dynamic stability of a rotary oscillating cantilever beam is presented in this study. Using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle and transformed into dimensionless forms. Stability diagrams of the first order approximate solutions are obtained by using the multiple scale perturbation method. The stability diagrams show that relatively large unstable regions exist near the combination of the first chordwise bending natural frequency and the first stretch natural frequency. This result is verified by using the generalized-${\alpha}$ method.

  • PDF

Dynamic Analysis of a Cantilever Beam with the Payametric Excitation in Rotation (회전 방향으로 매개 가진되는 외팔보의 동적 해석)

  • Im, Hyung-Bin;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2270-2276
    • /
    • 2002
  • Dynamic stability of a rotary oscillating cantilever beam is presented in this study. Using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle and transformed into dimensionless forms. Stability diagrams of the first order approximate solutions are obtained by using the multiple scale perturbation method. The stability diagrams show that relatively large unstable regions exist near the combination of the first chordwise bending natural frequency and the first stretch natural frequency. This result is verified by using the generalized -$\alpha$ method.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

Buckling and stability of elastic-plastic sandwich conical shells

  • Zielnica, Jerzy
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.157-169
    • /
    • 2012
  • Shell structures are very interesting from the design point of view and these are well recognized in the scientific literature. In this paper the analysis of the buckling loads and stability paths of a sandwich conical shell with unsymmetrical faces under combined load based on the assumptions of moderately large deflections (geometrically nonlinear theory) is considered and elastic-plastic properties of the material of the faces are taken into considerations. External load is assumed to be two-parametrical one and it is assumed that the shell deforms into the plastic range before buckling. Constitutive relations in the analysis are those of the Nadai-Hencky deformation theory of plasticity and Prandtl-Reuss plastic flow theory with the H-M-H (Huber-Mises-Hencky) yield condition. The governing stability equations are obtained by strain energy approach and Ritz method is used to solve the equations with the help of analytical-numerical methods using computer.

Stability evaluation of foundation settlement of power transmission tower (송전철탑의 기초침하에 대한 안정성 평가)

  • Lee, Dae-Soo;Cho, Hwa-Kyung;Kim, Dae-Hong;Ham, Bang-Uk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.687-696
    • /
    • 2005
  • Safety diagnosis was conducted to evaluate the long-term stability evaluation of power transmission tower of which deformation of the upper structural elements occurred. To assess the cause of the structural deformation, field investigation including BIPS, down-hole test, concrete pile coring and finite element analysis were carried out. From these studies, the major cause of deformation was found due to the heavily fractured layer and weathered soil topography at the pile tip area. The cement-milk grouting method was proposed to reinforce these weak zone around the pile tip area. Also, the increase of cross-section and stiffness for steel members of upper tower structures was suggested. Instrumental monitoring was proposed as well to verify reinforcing effect.

  • PDF

Stability Analysis of Unsaturated Soil Slope by Coupled Hydro-mechanical Model Considering Air Flow (공기흐름을 고려한 수리-역학적 연동모델에 의한 불포화 토사사면의 안정해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.19-33
    • /
    • 2016
  • Stability analysis based on the limit equilibrium method combined with the result of infiltration analysis is commonly used to evaluate the effect of rainfall infiltration on the slope stability. Soil is a three-phase mixture composed of solid particle, water and air. Therefore, a fully coupled mixture theories of stress-deformation behavior and the flow of water and air should be used to accurately analyze the process of rainfall infiltration through soil slope. The purpose of this study is to study the effect of interaction of air and water flow on the mechanical stability of slope. In this study, stability analyses based on the coupled hydro-mechanical model of three-phases were conducted for slope of weathered granite soil widespread in Korea. During the process of hydro-mechanical analysis strength reduction technique was applied to evaluate the effect of rainfall infiltration on the slope stability. The results showed an increase of air pressure during infiltration because rain water continuously displaced the air in the unsaturated zone. Such water-air interaction in the pore space of soil affects the stress-deformation behavior of slope. Therefore, the results from the three-phase model showed different behavior from the solid-water model that ignores the transport effect of air in the pores.