• Title/Summary/Keyword: Stability & Control

Search Result 6,824, Processing Time 0.037 seconds

Relaxing of the Sampling Time Requirement in Prove of the EDMC Stability

  • Haeri, Mohammad;Beik, Hossein Zadehmorshed
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1829-1832
    • /
    • 2004
  • Closed loop stability of Extended Dynamic Matrix Control (EDMC) is investigated for limited sampling time. Linear approximation of the sensitivity functions is employed in the derivation of the stability condition. It is shown that the closed loop system will be stable if the control moves suppression coefficient ${\lambda}$ is taken arbitrarily large. Special cases such as M=P=1 and M=1, P>1 are discussed in more details.

  • PDF

Critical Short Circuit Ratio Analysis on DFIG Wind Farm with Vector Power Control and Synchronized Control

  • Hong, Min;Xin, Huanhai;Liu, Weidong;Xu, Qian;Zheng, Taiying;Gan, Deqiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.320-328
    • /
    • 2016
  • The introduction of renewable energy sources into the AC grid can change and weaken the strength of the grid, which will in turn affect the stability and robustness of the doubly-fed induction generator (DFIG) wind farm. When integrated with weak grids, the DFIG wind turbine with vector power control often suffers from poor performance and robustness, while the DFIG wind turbine with synchronized control provides better stability. This paper investigates the critical short circuit ratios of DFIG wind turbine with vector power control and synchronized control, to analyze the stability boundary of the DFIG wind turbine. Frequency domain methods based on sensitivity and complementary sensitivity of transfer matrix are used to investigate the stability boundary conditions. The critical capacity of DFIG wind farm with conventional vector power control at a certain point of common coupling (PCC) is obtained and is further increased by employing synchronized control properly. The stability boundary is validated by electromagnetic transient simulation of an offshore wind farm connected to a real regional grid.

The Effects of Core Stability Exercise on the Ability of Postural Control in Patients With Hemiplegia

  • Kim, Young-Dong;Hwang, Byoung-Yong
    • Physical Therapy Korea
    • /
    • v.16 no.4
    • /
    • pp.23-30
    • /
    • 2009
  • Core stability exercises for patients with hemiplegia have become increasingly important and a variety of exercises have been developed over the years to give the hemiplegic patients more stable postural control. This study examined the therapeutic effects of the core stability exercises on the ability of static and dynamic postural control. Fifteen hemiplegic patients (7 males, 8 females, age ranging from 46 to 76 years) hospitalized in a Daejoen rehabilitation hospital were enrolled in this study. Nine and 6 patients had a cerebral infarction and cerebral hemorrhage, respectively. The subjects participated in a core stability exercise program consisting of a total of 12 sessions 3 times each week over a 4-week period with each exercise lasting approximately 15 minutes. The ability of static and dynamic postural control by Berg Balance Scale (BBS) and Timed Up and Go (TUG), respectively, were measured before and after the core stability exercise. A Wilcoxon signed ranks test was used to compare the effects of the ability of static and dynamic postural control before and after core stability exercise in patients with hemiplegia. The ${\alpha}$=.05 level of significance was used for the statistical tests. Core stability exercises were effective in improving the ability of static postural control; BBS (p<.05). Core stability exercises were also effective in improving the ability of dynamic postural control; TUG (p<.05). Overall, core stability exercise is believed to be an important therapeutic method in rehabilitation programs for hemiplegic patients.

  • PDF

Robust Optimal Bang-Bang Controller Using Lyapunov Robust Stability Condition (Lyapunov 강인 안정성 조건을 이용한 강인 최적 뱅뱅 제어기)

  • Park Young-Jin;Moon Seok-Jun;Park Youn-Sik;Lim Chae-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.411-418
    • /
    • 2006
  • There are mainly two types of bang-bang controllers for nominal linear time-invariant (LTI) system. Optimal bang-bang controller is designed based on optimal control theory and suboptimal bang-bang controller is obtained by using Lyapunov stability condition. In this paper, the suboptimal bang-bang control method is extended to LTI system involving both control input saturation and structured real parameter uncertainties by using Lyapunov robust stability condition. Two robust optimal bang-bang controllers are derived by minimizing the time derivative of Lyapunov function subjected to the limit of control input. The one is developed based on the classical quadratic stability(QS), and the other is developed based on the affine quadratic stability(AQS). And characteristics of the two controllers are compared. Especially, bounds of parameter uncertainties which theoretically guarantee robust stability of the two controllers are compared quantitatively for 1DOF vibrating system. Moreover, the validity of robust optimal bang-bang controller based on the AQS is shown through numerical simulations for this system.

Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.641-651
    • /
    • 2019
  • The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second moment is derived based on the $It{\hat{o}}$ stochastic differential rule. The stochastically and deterministically parameter-excited vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance amplitude.

Integrated Chassis Control with Electronic Stability Control and Active Front Steering under Saturation of Front Lateral Tire Forces (전륜 횡력의 포화를 고려한 ESC와 AFS의 통합 섀시 제어)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.903-909
    • /
    • 2015
  • This article presents an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) under saturation of front lateral tire force. Regardless of the use of AFS, the front lateral tire forces can be easily saturated. Under the saturated front lateral tire force, AFS cannot be effective to generate a control yaw moment needed for the integrated chassis control. In this paper, new integrated chassis control is proposed in order to limit the use of AFS in case the front lateral tire force is saturated. Weighed pseudo-inverse control allocation (WPCA) with variable weight is adopted to adaptively use the AFS. To check the effectiveness of the proposed scheme, simulation is performed on a vehicle simulation package, CarSim. From simulation, the proposed integrated chassis control is effective for vehicle stability control under saturated front lateral tire force.

Unified Chassis Control for Improvement of Vehicle Lateral Stability (차량 횡방향 안정성 향상을 위한 통합섀시 제어)

  • Cho, Wan-Ki;Yi, Kyoung-Su;Yoon, Jang-Yeol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1126-1131
    • /
    • 2007
  • This paper presents unified chassis control (UCC) to improve the vehicle lateral stability. The unified chassis control implies combined control of active front steering (AFS), electronic stability control (ESC) and continuous damping control (CDC). A direct yaw moment controller based on a 2-D bicycle model is designed by using sliding mode control law. A direct roll moment controller based on a 2-D roll model is designed. The computed direct yaw moment and the direct roll moment are generated by AFS, ESP and CDC control modules respectively. A control authority of the AFS and the ESC is determined by tire slip angle. Computer simulation is conducted to evaluate the proposed integrated chassis controller by using the Matlab, simulink and the validated vehicle simulator. From the simulation results, it is shown that the proposed unified chassis control can provide with improved performance over the modular chassis control.

  • PDF

Application of an Adaptive Autopilot Design and Stability Analysis to an Anti-Ship Missile

  • Han, Kwang-Ho;Sung, Jae-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.78-83
    • /
    • 2011
  • Traditional autopilot design requires an accurate aerodynamic model and relies on a gain schedule to account for system nonlinearities. This paper presents the control architecture applied to a dynamic model inversion at a single flight condition with an on-line neural network (NN) in order to regulate errors caused by approximate inversion. This eliminates the need for an extensive design process and accurate aerodynamic data. The simulation results using a developed full nonlinear 6 degree of freedom model are presented. This paper also presents the stability evaluation for control systems to which NNs were applied. Although feedback can accommodate uncertainty to meet system performance specifications, uncertainty can also affect the stability of the control system. The importance of robustness has long been recognized and stability margins were developed to quantify it. However, the traditional stability margin techniques based on linear control theory can not be applied to control systems upon which a representative non-linear control method, such as NNs, has been applied. This paper presents an alternative stability margin technique for NNs applied to control systems based on the system responses to an inserted gain multiplier or time delay element.

An Investigation into Coordinated Control of 4-wheel Independent Brakes and Active Roll Control System for Vehicle Stability (차량 안정성 향상을 위한 ESC와 ARS의 통합 샤시 제어 알고리즘 개발)

  • Her, Hyundong;Yi, Kyongsu;Suh, Jeeyoon;Kim, Chongkap
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • This paper describes an investigation into coordinated control of electronic stability control (ESC) and active roll control system (ARS). The coordinated control is suggested to improve the vehicle stability and agility features by yaw rate control. The proposed integrated chassis control algorithm consists of a supervisor, control algorithms, and a coordinator. The supervisor monitors the vehicle status and determines desired vehicle motions such as a desired yaw rate and desired roll motion based on control modes to improve vehicle stability. According to the corresponding the desired vehicle dynamics, the control algorithm calculated a desired yaw moment and desired roll moment, respectively. Based on the desired yaw moment and the desired roll moment, the coordinator determines the brake pressures and the ARC motor torques based on control strategies. Closed loop simulations with a driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy using CarSim vehicle dynamics software and the integrated controller coded using Matlab/Simulink.

A Study of Attitude Control and Stability Analysis Using D-Decomposition Stability Area Technique for Launch Vehicle (안정성 영역(Stability Area) 판별법을 이용한 발사체 자세제어 이득 설계 및 자세 안정성 분석)

  • Park, Yong-Kyu;Sun, Byung-Chan;Roh, Woong-Rae;Oh, Choong-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.537-544
    • /
    • 2009
  • This paper concerns analysis technique on determining of attitude control gain in the low frequency region using stability area. The stability area is defined by the D-Decomposition method, which was designed by Neimark. In this paper, it is introduced D-Decomposition method from reference paper and design attitude control gain of generic launch vehicle during first stage flight phase. For selecting PD control gain, it is considered the system parameter uncertainty about whole first-stage flight phase, represented the stability area boundary on each case. After deciding the PD control gain using stability area method, it is applied to launch vehicle linear model, and checking the stability margin requirement, frequency response characteristics.