• 제목/요약/키워드: Sr-modification

검색결과 62건 처리시간 0.03초

주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 공정 Mg2Si 개량과 주조특성에 미치는 Sc, Sr 첨가원소의 영향 (Effect of Sc, Sr Elements on Eutectic Mg2Si Modification and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제35권6호
    • /
    • pp.147-154
    • /
    • 2015
  • The effects of Sc and Sr elements on the modification of the eutectic $Mg_2Si$ phase and the castability were investigated in the Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurements of the cooling curve and microstructure observations were performed to analyze the additional effects of Sc and Sr minor elements during the solidification process. A prominent effect found on the modification of the eutectic $Mg_2Si$ phase with additions of the Sr and Sc elements. Here, a fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident with an addition of Sc element up to 0.2 wt%. The growth temperature of the eutectic $Mg_2Si$ phase decreased and the effect on the modification of the eutectic $Mg_2Si$ phase increased with the addition of Sr element up to 0.02 wt%. The addition of 0.02wt%Sr had the strongest effect on the modification of the eutectic $Mg_2Si$ phase, and the resulting microstructure of the eutectic $Mg_2Si$ phase was found to have a fibrous morphology with a decreased aspect ratio and an increased modification ratio. Fluidity and shrinkage tests were conducted to evaluate the castability of the alloy. The addition of 0.02wt%Sr effectively increased the fluidity of the alloy, while an addition of Sc did not show any effect compared to when nothing was added. The maximum filling length was recorded for 0.01wt%TiB-0.02wt%Sr owing to the effect of the fine ${\alpha}$-Al grains. The macro-shrinkage ratio decreased, while the micro-shrinkage ratio increased with the addition of various eutectic modifiers. The highest ratio of micro-shrinkage was recorded for the 0.02wt%Sr condition. However, the total shrinkage ratio was nearly identical regardless of the amounts added in this study.

Mg-5Al-2Si 합금의 조직 및 부식특성에 미치는 Sb, Sr 첨가의 영향 (Effect of Sb and Sr Addition on Corrosion Properties of Mg-5Al-2Si Alloy)

  • 전종진;이상원;김병호;박봉규;박용호;박익민
    • 대한금속재료학회지
    • /
    • 제46권5호
    • /
    • pp.304-309
    • /
    • 2008
  • Magnesium alloys containing $Mg_2Si$ particles, as a promising cheap heat-resistant magnesium alloy for automobile power train parts applications, are attracting more attention of both material scientists and design engineers. Modification of the Chinese script shape $Mg_2Si$ particle is a key for using this alloy in sand or permanent mould casting. In the present work, the modification effect of Sr and Sb on the corrosion properties of the Mg-5Al-2Si alloy was investigated. Sr or Sb addition promoted the formation of fine polygonal shape $Mg_2Si$ particles by providing the nucleation sites. Sr was more effective element than Sb for shape modification of Chinese script shape $Mg_2Si$. Such improved microstructure of the modified alloy resulted in large improvement in corrosion resistance as compared to unmodified Mg-5Al-2Si alloy.

Microstructure and Mechanical Properties of Solution Treatment and Sr-Modification of Al-12%Si-1.5%Cu Alloy

  • Surin, Prayoon;Wong on, Jessada;Eidhed, Krittee
    • International Journal of Advanced Culture Technology
    • /
    • 제3권2호
    • /
    • pp.132-137
    • /
    • 2015
  • The purpose of this paper was to investigate the effects of solution treatment time and Sr-modification on the microstructure and property of the Al-Si piston alloy. It was found that as-cast microstructures of unmodified and Sr-modified Al-Si alloys consisted of a coarse acicular plate of eutectic Si, $Cu_3NiAl_6$ and $Mg_2Si$ phases in the ${\alpha}$-Al matrix but different in size and morphology. Both size and inter-particle spacing of Si particles were significantly changed by increasing of the solution treatment time. After a short solution treatment, the coarse acicular plate of the eutectic Si appears to be fragmented. Fully modified microstructure of Sr-modified alloy can reduce the solution treatment time to shorter compared to unmodified alloy. The maximum of a peak hardness value is found in the very short solution treatment of both Al-Si piston alloys. Compared to 10 h solution treatment, the solution treatment of 2-4 h is sufficient to achieve appropriate microstructures and hardness. The short solution treatment is very useful to increase the productivity and to reduce the manufacturing cost of the Al-Si piston alloys.

아공정 Al-Si합금 조직에 미치는 Sc의 효과 (The Effects of Sc on the Microstructure of Hypoeutectic Al-Si Alloys)

  • 김명한;이종태
    • 한국주조공학회지
    • /
    • 제24권3호
    • /
    • pp.145-152
    • /
    • 2004
  • The eutectic Si in Al-8.5wt.%Si alloy was changed from large flake to fine lemellar(or fibrous) shape when the Sc amount in the Al-Si alloy reaches 0.2wt.%. The optimum amount of Sc for the best modification effect was 0.8wt.% and slight decrease of modification effect occurred over this value. The study on the distribution of the modifiers(Sr, Na, and Sc) and the measurement of the surface tension of the Al-8.5wt.%Si alloy melt added with Sr, Na, and Sc modifier, respectively, reveals that Sc modifies the eutectic Si by the decrease of surface tension, while Sr and Na modify the eutectic Si mainly by impurity induced twinning mechanism.

Al-Si-Mg계 주조합금의 미세조직에 미치는 Ti 및 Sr첨가 영향 (Effect of Ti and Sr on the Microstructure of Al-Si-Mg Casting Alloy)

  • 정재영;김경현;김창주
    • 한국기계연구소 소보
    • /
    • 통권20호
    • /
    • pp.71-78
    • /
    • 1990
  • This investigation was undertaken to establish the technologies of grain refinement and modification, and to characterize material properties, essential for high quality aluminum alloy castings. Grain refinement seldom changed DAS and eutectic Si size, but largely decrease grain size. The variations of grain size induced by grain refinement had a great influence on the elongation without changes in the tensile strength or yield strength. The optimum Ti level lies between 0.1% and 0.16% to achieve the best possible mechanical properties. DAS and grain size were little affected, but eutectic Si size was greatly refined by modification. The variation of eutectic Si size had a great effect on the elongation, impact value, fracture toughness and fatigue crack propagation rate without changes in the tensile strength or yield strength. The Sr content of 0.015% is optimum to modification.

  • PDF

Sr 개량처리된 사형주조 Al-7Si-0.35Mg 합금의 열처리에 따른 공정 Si상 변화거동 및 특성평가 (Behavior of Eutectic Si and Mechanical Properties of Sr Modified Al-7Si-0.35Mg alloy with Solid Solution Treatment for Sand Casting)

  • 김명균;황석민
    • 한국주조공학회지
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we focused on the correlation between the solidification structure, heat treatment and mechanical properties of the A356 alloy according to the conditions of Sr modification. The microstructural evolution of the eutectic Si and ${\alpha}-Al$ phase in the A356 alloy castings depending on the amount of Sr were investigated during solid solution heat treatment using an optical microscope, a scanning electron microscope and an image analyzer. In addition, tensile tests on the heat treated materials examined the relationship between the microstructure and the fracture surface. The as-cast A356 alloys under 40 ppm Sr showed an undermodified microstructure, but that of the added 60-80 ppm Sr had well modified structure of fine fibrous silicon. After solid solution treatment, the microstructure of the undermodified A356 alloy exhibited a partially spheroidized morphology, but the remainder showed the fragmentation of fibrous shaped silicon. The spheroidization of the eutectic silicon in the modified A356 alloys was completed during heat treatment, which was very effective in increasing the elongation. This is supported by the fracture surface in the tensile test.

AC4A 알루미늄 합금의 주조특성에 미치는 미량 첨가원소의 영향 (Effect of Minor Additives on Casting Properties of AC4A Aluminum Casting Alloys)

  • 오승환;김헌주
    • 한국주조공학회지
    • /
    • 제37권5호
    • /
    • pp.148-156
    • /
    • 2017
  • The effects of minor additives on the casting properties of AC4A aluminum alloys were investigated. Measurements of the cooling curve and microstructure observations were conducted to analyze the effects of Ti-B and Sr minor elements during the solidification process. A fine grain size and an increase in the crystallization temperature for the ${\alpha}-Al$ solution were evident after the addition of 0.1wt% Al-5%Ti-1%B additive. The modification effect of the eutectic $Mg_2Si$ phase with the addition of 0.05% Al-10%Sr additive was prominent. A fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident. Fluidity, shrinkage and solidification-cracking tests were conducted to evaluate the castability of the alloy. The combined addition of Al-5%Ti-1%B and Al-10%Sr additives showed the maximum filling length owing to the effect of the fine ${\alpha}-Al$ grains. The macro-shrinkage ratio increased, while the micro-shrinkage ratio decreased with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives. The macro-shrinkage ratio was nearly identical, while the micro-shrinkage ratio increased with the addition of the Al-10%Sr additive. The tendency of the occurrence of solidification cracking decreased owing to the effect of the fine ${\alpha}-Al$ grains and the modification of the $Mg_2Si$ phase with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives.

재활용 AC4A 알루미늄 합금의 충격 및 피로 특성에 미치는 (Ti-B), Sr 첨가제의 영향 (Effect of (Ti-B) and Sr Additives on Impact and Fatigue Properties of Recycled AC4A Aluminum Casting Alloy)

  • 오승환;김헌주
    • 한국주조공학회지
    • /
    • 제39권4호
    • /
    • pp.61-74
    • /
    • 2019
  • The effects of Sr and (Ti-B) additives on the impact and fatigue properties of recycled (35% scrap content) AC4A aluminum alloy are investigated here. The acicular morphology of the eutectic Si phase of as-cast specimens was converted to the fibrous one with Sr additives. The grain size of the α-solid solution decreased by the addition of (Ti-B) additives. The crack initiation energy (Ei) of the impact absorption energy decreased due to the incorporation of an oxide film and inclusions depending on the scrap used. The modification of the eutectic Si morphology by Sr additives is considered as the main factor of the increase of the average impact absorption energy (Et). The addition of (Ti-B) additives contributed to an increase in the occurrence of crack deflections due to the refining of α-Al grains, resulting in improved fatigue properties.

과공정 Al-Si 합금의 미세조직에 영향을 미치는 Sr의 영향 (The Effect of Sr on the Microstructures of Hypereutectic Al-Si Alloys)

  • 김명한
    • 한국주조공학회지
    • /
    • 제26권3호
    • /
    • pp.140-145
    • /
    • 2006
  • Sr, added in the hypereutectic Al-Si alloys, is absorbed on the surfaces of primary Si as well as eutectic Si, and can change the growth mode of primary Si from non-faceted to faceted mode, as the amount of Sr increases larger than 0.04 wt.%, even though it cannot affect the grain size of primary Si, significantly. The EBSD analysis shows that the traction of ${\Sigma}3$ boundary(twin boundary) increases as the amount of Sr in the hypereutectic Al-Si alloys increase until the over-modification occurs at 1.6 wt.%Sr and proves that the change in growth mode of primary Si results from the change of TPRE growth to IIT growth.