• Title/Summary/Keyword: Sr-90

Search Result 376, Processing Time 0.031 seconds

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Optical and Structural Analysis of BaSi2O2N2:Eu Green Phosphor for High-Color-Rendering Lighting (고연색 백색 광원용 BaSi2O2N2:Eu 형광체의 광학·구조 특성 분석)

  • Lee, Sunghoon;Kang, Taewook;Kang, Hyeonwoo;Jeong, Yongseok;Kim, Jongsu;Heo, Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.437-442
    • /
    • 2019
  • Green $BaSi_2O_2N_2:0.02Eu^{2+}$ phosphor is synthesized through a two-step solid state reaction method. The first firing is for crystallization, and the second firing is for reduction of $Eu^{3+}$ into $Eu^{2+}$ and growth of crystal grains. By thermal analysis, the three-time endothermic reaction is confirmed: pyrolysis reaction of $BaCO_3$ at $900^{\circ}C$ and phase transitions at $1,300^{\circ}C$ and $1,400^{\circ}C$. By structural analysis, it is confirmed that single phase [$BaSi_2O_2N_2$] is obtained with Cmcm space group of orthorhombic structure. After the first firing the morphology is rod-like type and, after the second firing, the morphology becomes round. Our phosphor shows a green emission with a peak position of 495 nm and a peak width of 32 nm due to the $4f^65d^1{\rightarrow}4f^7$ transition of $Eu^{2+}$ ion. An LED package (chip size $5.6{\times}3.0mm$) is fabricated with a mixture of our green $BaSi_2O_2N_2$, and yellow $Y_3Al_5O_{12}$ and red $Sr_2Si_5N_8$ phosphors. The color rendering index (90) is higher than that of the mixture without our green phosphor (82), which indicates that this is an excellent green candidate for white LEDs with a deluxe color rendering index.

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.

Temporal Variations of Ore Mineralogy and Sulfur Isotope Data from the Boguk Cobalt Mine, Korea: Implication for Genesis and Geochemistry of Co-bearing Hydrothermal System (보국 코발트 광상의 산출 광물종 및 황동위원소 조성의 시간적 변화: 함코발트 열수계의 성인과 지화학적 특성 고찰)

  • Yun, Seong-Taek;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.289-301
    • /
    • 1997
  • The Boguk cobalt mine is located within the Cretaceous Gyeongsang Sedimentary Basin. Major ore minerals including cobalt-bearing minerals (loellingite, cobaltite, and glaucodot) and Co-bearing arsenopyrite occur together with base-metal sulfides (pyrrhotite, chalcopyrite, pyrite, sphalerite, etc.) and minor amounts of oxides (magnetite and hematite) within fracture-filling $quartz{\pm}actinolite{\pm}carbonate$ veins. These veins are developed within an epicrustal micrographic granite stock which intrudes the Konchonri Formation (mainly of shale). Radiometric date of the granite (85.98 Ma) indicates a Late Cretaceous age for granite emplacement and associated cobalt mineralization. The vein mineralogy is relatively complex and changes with time: cobalt-bearing minerals with actinolite, carbonates, and quartz gangues (stages I and II) ${\rightarrow}$ base-metal sulfides, gold, and Fe oxides with quartz gangues (stage III) ${\rightarrow}$ barren carbonates (stages IV and V). The common occurrence of high-temperature minerals (cobalt-bearing minerals, molybdenite and actinolite) with low-temperature minerals (base-metal sulfides, gold and carbonates) in veins indicates a xenothermal condition of the hydrothermal mineralization. High enrichment of Co in the granite (avg. 50.90 ppm) indicates the magmatic hydrothermal derivation of cobalt from this cooling granite stock, whereas higher amounts of Cu and Zn in the Konchonri Formation shale suggest their derivations largely from shale. The decrease in temperature of hydrothermal fluids with a concomitant increase in fugacity of oxygen with time (for cobalt deposition in stages I and II, $T=560^{\circ}C-390^{\circ}C$ and log $fO_2=$ >-32.7 to -30.7 atm at $350^{\circ}C$; for base-metal sulfide deposition in stage III, $T=380^{\circ}-345^{\circ}C$ and log $fO_2={\geq}-30.7$ atm at $350^{\circ}C$) indicates a transition of the hydrothermal system from a magmatic-water domination toward a less-evolved meteoric-water domination. Sulfur isotope data of stage II sulfide minerals evidence that early, Co-bearing hydrothermal fluids derived originally from an igneous source with a ${\delta}^{34}S_{{\Sigma}S}$ value near 3 to 5‰. The remarkable increase in ${\delta}^{34}S_{H2S}$ values of hydrothermal fluids with time from cobalt deposition in stage II (3-5‰) to base-metal sulfide deposition in stage III (up to about 20‰) also indicates the change of the hydrothermal system toward the meteoric water domination, which resulted in the leaching-out and concentration of isotopically heavier sulfur (sedimentary sulfates), base metals (Cu, Zn, etc.) and gold from surrounding sedimentary rocks during the huge, meteoric water circulation. We suggest that without the formation of the later, meteoric water circulation extensively through surrounding sedimentary rocks the Boguk cobalt deposits would be simple veins only with actinolite + quartz + cobalt-bearing minerals. Furthermore, the formation of the meteoric water circulation after the culmination of a magmatic hydrothermal system resulted in the common occurrence of high-temperature minerals with later, lower-temperature minerals, resulting in a xenothermal feature of the mineralization.

  • PDF

The Comparison of Image Quality and Quantitative Indices by Wide Beam Reconstruction Method and Filtered Back Projection Method in Tl-201 Myocardial Perfusion SPECT (Tl-201 심근관류 SPECT 검사에서 광대역 재구성(Wide Beam Reconstruction: WBR) 방법과 여과 후 역투영법에 따른 영상의 질 및 정량적 지표 값 비교)

  • Yoon, Soon-Sang;Nam, Ki-Pyo;Shim, Dong-Oh;Kim, Dong-Seok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.122-127
    • /
    • 2010
  • Purpose: The Xpress3.$cardiac^{TM}$ which is a kind of wide beam reconstruction (WBR) method developed by UltraSPECT (Haifa, Israel) enables the acquisition of at quarter time while maintaining image quality. The purpose of this study is to investigate the usefulness of WBR method for decreasing scan times and to compare to it with filtered back projection (FBP), which is the method routinely used. Materials and Methods: Phantom and clinical studies were performed. The anthropomorphic torso phantom was made on an equality with counts from patient's body. The Tl-201 concentrations in the compartments were 74 kBq (2 ${\mu}Ci$)/cc in myocardium, 11.1 kBq (0.3 ${\mu}Ci$)/cc in soft tissue, and 2.59 kBq (0.07 ${\mu}Ci$)/cc in lung. The non-gated Tl-201 myocardial perfusion SPECT data were acquired with the phantom. The former study was scanned for 50 seconds per frame with FBP method, and the latter study was acquired for 13 seconds per frame with WBR method. Using the Xeleris ver. 2.0551, full width at half maximum (FWHM) and average image contrast were compared. In clinical studies, we analyzed the 30 patients who were examined by Tl-201 gated myocardial perfusion SPECT in department of nuclear medicine at Asan Medical Center from January to April 2010. The patients were imaged at full time (50 second per frame) with FBP algorithm and again quarter-time (13 second per frame) with the WBR algorithm. Using the 4D MSPECT (4DM), Quantitative Perfusion SPECT (QPS), and Quantitative Gated SPECT (QGS) software, the summed stress score (SSS), summed rest score (SRS), summed difference score, end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were analyzed for their correlations and statistical comparison by paired t-test. Results: As a result of the phantom study, the WBR method improved FWHM more than about 30% compared with FBP method (WBR data 5.47 mm, FBP data 7.07 mm). And the WBR method's average image contrast was also higher than FBP method's. However, in result of quantitative indices, SSS, SDS, SRS, EDV, ESV, EF, there were statistically significant differences from WBR and FBP(p<0.01). In the correlation of SSS, SDS, SRS, there were significant differences for WBR and FBP (0.18, 0.34, 0.08). But EDV, ESV, EF showed good correlation with WBR and FBP (0.88, 0.89, 0.71). Conclusion: From phantom study results, we confirmed that the WBR method reduces an acquisition time while improving an image quality compared with FBP method. However, we should consider significant differences in quantitative indices. And it needs to take an evaluation test to apply clinical study to find a cause of differences out between phantom and clinical results.

  • PDF

Application of Science for Interpreting Archaeological Materials(III) Characterization of Some Western Asia Glass Vessels from South Mound of Hwangnamdaechong (고고자료의 자연과학 응용(III) 황남대총(남분)의 일부 서역계 유리제품에 대한 과학적 특성 분류)

  • Kang, Hyung Tae;Cho, Nam Chul
    • Korean Journal of Heritage: History & Science
    • /
    • v.41 no.1
    • /
    • pp.5-19
    • /
    • 2008
  • Thirty six samples of Western asia glass vessel shards which were excavated from South Mound of Hwangnamdaechong were each measured for thickness, pore size and specific gravity and analyzed for ten major compositions and thirteen trace elements. The glass samples with colorless, greenish blue and dark purple blue were well classified by principal component analysis(PCA). All glass shards of Hwangnamdaechong belonged to Soda glass system ($Na_2O-CaO-SiO_2$) which have the range of 14~17% $Na_2O$ and 5~6% CaO. The corelation coefficients of (MgO, $K_2O$) and (MnO, CuO) showed above 0.90. The concentrations of thirteen trace elements apparently differentiated from colorless, greenish blue and dark blue glasses. We found that thirteen trace elements were very important indices for studying raw material of glass and the origin of glass making. Colorless glass : The specific gravity is $1.50{\pm}0.04$. Circle or oval circle pores are observed with regular direction in internal zone and the longest one is about 0.35 mm. The raw material of sodium must be the plant ash because sodium glasses contain HCLA(High CaO, Low $Al_2O_3$) and HMK(high MgO, high $K_2O$) and suggested to Sasanian glass. The total amount of coloring agent of colorless glass is below 1 % which is too small to attribute to the color. Greenish blue glass : The specific gravity is $1.58{\pm}0.04$. The fine pores which are 0.1~0.2mm are dispersed in internal zone. Sodium glasses are distributed to HCLA and HMK. Therefore the greenish blue glass also have used plant ash for raw material of sodium with the same as colorless glass. It was also suggested to the glass of Sasanian. The total amount of coloring agent of greenish blue glass is about 4% under the influence of working MnO, $Fe_2O_3$ and CuO. Dark purple blue glass : The specific gravity is $1.48{\pm}0.19$. There are rarely pores in internal zone. They are distributed to HCLA and LMK(Low MgO, Low $K_2O$) and suggested to Roman glass. The raw material of sodium is estimated to natron. The total amount of coloring agents of greenish blue is about 3% by $Fe_2O_3$ and CuO. These studies for western asia glass shards from South Mound of Hwangnamdaechong could be used in the future as the standard data which could be compared with those of other several graves in Korea and dispersed in foreign areas.