• Title/Summary/Keyword: Sr doped layered perovskite

Search Result 5, Processing Time 0.018 seconds

Comparison of Electrical Conductivities in Complex Perovskites and Layered Perovskite for Cathode Materials of Intermediate Temperature-operating Solid Oxide Fuel Cell (중·저온형 고체산화물 연료전지 공기극 물질로 사용되는 이중층 페로브스카이트와 컴플렉스 페로브스카이트의 전기 전도도 비교)

  • Kim, Jung Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.295-299
    • /
    • 2014
  • Electrical conductivities of complex perovskites, layered perovskite and Sr doped layered perovskite oxides were measured and analyzed for cathode materials of Intermediate Temperature-operating Solid Oxide Fuel Cells (IT-SOFCs). The electrical conductivities of $Sm_{1-x}Sr_xCoO_{3-\delta}$ (x = 0.3 and 0.7) exhibit a metal-insulator transition (MIT) behavior as a function of temperature. However, $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ (SSC55) shows metallic conductivity characteristics and the maximum electrical conductivity value compared to the values of $Pr_{0.5}Sr_{0.5}CoO_{3-\delta}$ (PSC55) and $Nd_{0.5}Sr_{0.5}CoO_{3-\delta}$ (NSC55). The electrical conductivity of $SmBaCo_2O_{5+\delta}$ (SBCO) exhibits a MIT at about $250^{\circ}C$. The maximum conductivity is 570 S/cm at $200^{\circ}C$ and its value is higher than 170 S/cm over the whole temperature range tested. $SmBa_{0.5}Sr_{0.5}Co_2O_{5+\delta}$ (SBSCO), 0.5 mol% Sr and Ba substituted at the layered perovskite shows a typically metallic conductivity that is very similar to the behavior of the SSC55 cathode, and the maximum and minimum electrical conductivity in the SBSCO are 1280 S/cm at $50^{\circ}C$ and 280 S/cm at $900^{\circ}C$.

Photocatalytic Performance of Barium-doped Strontium Tantalate

  • Kozu, Asuka;Fujimori, Hirotaka;Kim, Ki-Young;Oshiro, Kazunori;Yamamoto, Setsuo;Sakata, Yoshihisa;Imamura, Hayao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.926-927
    • /
    • 2006
  • [ $Sr_2Ta_2O_7$ ], a layered perovskite compound, has been reported to possess most excellent photocatalytic properties among the layered perovskite materials. Recently, we have demonstrated that $Ba_5Ta_4O_{15}$ that was prepared under a mol ratio of Ba: Ta=1:1 has high photocatalytic performance as well as $Sr_2Ta_2O_7$. In this study, the photocatalyst samples with a mol ratio of Sr: Ba: Ta = (1-x): x: 1 were prepared. The maximum photocatalytic performance was obtained for x= 0.2, which is three times as high as that of undoped $Sr_2Ta_2O_7$.

  • PDF

Electrochemical Investigation in Particle Size and Thermal Cycles of Sr Doped Layered Perovskite Based Composite Cathodes for Intermediate Temperature-operating Solid Oxide Fuel Cell (중·저온형 고체산화물 연료전지 공기극의 적용을 위한 Sr이 치환된 이중층 페로브스카이트 기반 복합공기극 물질의 분말 크기 및 열 사이클에 따른 전기화학특성 분석)

  • Kim, Jung-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.176-183
    • /
    • 2011
  • The electrochemical characteristics from various particle sizes of $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$ (CGO91) in composite cathode comprised of the samarium-strontium doped layered perovskite ($SmBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$) and CGO91 have been investigated for possible application as a cathode material for an intermediate temperature-operating solid oxide fuel cell (IT-SOFC). The area specific resistances (ASRs) of composite cathodes with CGO91 having smaller particle size ($0.4\sim42{\mu}m$) and SBSCO of 1 : 1 ratio (50wt% SBSCO and 50 wt% CGO91, SBSCO: 50) give the lowest ASR of $0.10{\mu}cm^2$ at $600^{\circ}C$ and $0.013{\Omega}cm^2$ at $700^{\circ}C$. However, composite cathodes with having relatively bigger CGO91 particle size show the two times higher ASR results than those of SBSCO : 50. From the 10 times thermal cycles in SBSCO : 50, the ASRs of SBSCO : 50 increased from $0.0193{\Omega}cm^2$ to $0.094{\Omega}cm^2$ at $700^{\circ}C$, however, the ASR value was maintained after 7 times of thermal cycling.

Ionic Doping Effect in Bi-layered Perovskite SrBi2Nb2O9 Ferroelectrics (비스무스 층구조형 페로브스카이트 SrBi2Nb2O9 강유전체의 이온 치환 효과)

  • Park, S.E.;Cho, J.A.;Song, T.K.;Kim, M.H.;Kim, S.S.;Lee, H.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.846-849
    • /
    • 2003
  • Doping effect of various ions in Bi-layered ferroelectric $SrBi_2$$Nb_2$$O_{9}$ (SBN) ceramics was studied. Undoped SBN ceramic and SBN ceramics doped with $Ba^{2+}$, $Pb^{2+}$,$ Ca^{2+}$ , $Bi^{3+}$ , $La^{3+}$ , $Ti^{4+}$ , $Mo^{6+}$ , and $W^{6+}$ ions were made by a solid state reaction. Dielectric constants were measured with temperature. Ferroelectric transition temperature decreased with $Pb^{2+}$ , $Ba^{2+}$ , $La^{3+}$ doping, but the transition temperature increased with $Ca^{2+}$ , $Bi^{3+}$ , $Ti^{4+}$, $Mo^{6+}$ , or$ W^{6+}$ ionic doping. These results show that the ion size plays an important role in the ferroelectricity of SBN ceramic.