• Title/Summary/Keyword: Sr 동위원소

Search Result 91, Processing Time 0.022 seconds

Rare Earth Element, Sm-Nd and Rb-Sr Age and its Geochemical Implication of Leucogranite in the Deokgu Hot Spring Area, Yeongnam Massif, Korea (영남육괴 북동부 덕구온천지구 우백질 화강암의 희토류원소 분포도, Sm-Nd, Rb-Sr 연대 및 지구화학적 의의)

  • Lee, Seung-Gu;Kim, Tong-Kwon;Lee, Tae-Jong
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.207-217
    • /
    • 2011
  • Here we report major element composition, trace and rare earth element abundance, Sm-Nd and Rb-Sr isotopic composition from Deokgu leucogranite. Chondrite-normalized REE pattern and its Eu anomaly are divided into 3 types systematically, and have close relationship with $SiO_2$ contents. Such geochemical characteristic indicates that the leucogranite was derived by feldspar fractionation from a common source magma. Sm-Nd and Rb-Sr whole rock ages are $1,785{\pm}180Ma$ (initial $^{143}Nd/^{144}Nd\;ratio=0.51003{\pm}0.00016,\;2{\sigma}$; ${\varepsilon}_{Nd}(T)=-5.9$) and $1,735{\pm}260Ma$ (initial $^{87}Sr/^{86}Sr\;ratio=0.702{\pm}0.046,\;2{\sigma}$), respectively. Initial ${\varepsilon}_{Nd}$ value indicates that the magma should be derived from the crustal material. This initial ${\varepsilon}_{Nd}$ value also corresponds well with those from the Precambrian granitoids from North-China Craton rather than those of South-China Craton.

Geochemical and Isotopic Study of the Onjeongri Granite in the Northern Gyeongsang Basin, Korea : Comparison with Cretaceous to Tertiary Granitic Rocks in the Other Part of the Gyeongsang Basin and the Inner Zone of Southwest Japan (경상분지 북부에 분포하는 온정리 화강암에 대한 암석화학적, 동위원소 지구화학적 연구 : 경상분지 다른 지역과 서남 일본 내대에 분포하는 백악기-제 3기 화강암류와의 비교 고찰)

  • 정창식;권성택;김정민;장병욱
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.77-97
    • /
    • 1998
  • We analyzed geochemical and radiogenic isotope data to investigate the genesis and source characteristics of the Onjeongri granite in the northern part of the Gyeongsang Basin. Field observation and K-Ar ages confirm late Cretaceous intrusion (ca. 87 Ma) of the Onjeongri granite. The hornblende geobarometery gives less than 2 kbar for the emplacement pressure of the Onjeongri granite. Geochemical and isotopic compositions suggest that the Onjeongri granite was formed in a relatively immature arc system. $SiO_2$ contents show a negative linear relationship with initial $^{87}Sr/^{86}Sr$ ratios, and an apparent positive correlation with $^{207}Pb/^{204}Pb$ ratios, suggesting an incomplete mixing or assimilation. However, the isotopic data known for any exposed rocks of the study area do not fit as an endmember, implying that the contaminant might reside in the lower crust. A review of published isotopic ages, geochemical, and Sr and Nd isotopic data for the Cretaceous to Tertiary granites in the Gyeongsang Basin indicates the followings. 1) Granitic magmatism in the Gyeongsang Basin were episodic. 2) Granitic rocks in the basin were derived from young (< 0.9 Ga) lower crust, and their isotopic signatures reflect heterogeneous source region. Geochemical and isotopic signatures of granitic rocks in the basin are difficult to explain by upper crustal contamination. 3) Granites in the Gyeongsang Basin have closely related to those in the San in Belt of the Inner Zone of Southwest Japan in terms of age, petrography, and isotopic and geochemical composition. 4) Sr-Nd isotopic signatures of the Onjeongri granite are relatively primitive compared with granitic rocks in the other parts of the Gyeongsang Basin and in the Inner Zone of Southwest Japan.

  • PDF

Discrimination of Sediment Provenance Using $^{87}Sr/^{86}Sr$ Ratios in the East China Sea ($^{87}Sr/^{86}Sr$비를 이용한 동중국해 대륙붕 퇴적물의 기원 연구)

  • Youn, Jeung-Su;Lim, Chong-Il;Byun, Jong-Cheol;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.92-99
    • /
    • 2005
  • To discriminate the provenance of shelf sediments in the East China Sea, textural and elemental compositions along with strontium isotopic ratio ($^{87}Sr/^{86}Sr$) were analyzed and compared with the sediments originated from Chinese rivers. The sediments in the study area are composed of fine-grained mud with a mean grain size of $47\;{\phi}$ and their $CaCO_3$, contents range from 3.9 to 11.5% (average 7.6%). In the study area, the content of most metallic elements are strongly constrained by sediment grain size (quartz dilution effect) and that of biogenic material and, thereby, their spatial distribution seems not enough for understanding sediment provenance in the study area. The muddy sediments of the Yangtze river have much lower $^{87}Sr/^{86}Sr$ ratio ($0.71197{\sim}0.71720$) than the Yellow Sea shelf muddy sediments which are supposed to be originated from the Huanghe river ($0.72126{\sim}0.72498$), suggesting the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the study area. Different source rock compositions and weathering processes between both drainage basins may account for the differences in $^{87}Sr/^{86}Sr$ ratio. Although the ratios show wide range, from 0.71445 to 0.72184 with an average 0.71747 in the study area, they are close to the values of the Yangtze river sediments, suggesting that the sediments were mainly originated from the Yangtze river. The previous studies on the dispersal pattern of modern sediments and the physico-chemical properties of seawater in the Yellow and East China seas support the possibility that the fine-grained Yangtze river sediments can reach to the East China Sea shelf as well as to the southeastern Yellow Sea.

Separation and Purification for the Determination of Zirconium and Its Isotopes in PWR Spent Nuclear Fuels (PWR 사용후핵연료 중 Zr 및 Zr 동위원소 정량을 위한 분리 및 정제)

  • Kim, Jung Suk;Jeon, Young Shin;Park, Yong Joon;Lee, Chang Heon;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.421-428
    • /
    • 1998
  • A method has been studied to separate Zr from various fission products in PWR spent nuclear fuels. A solution containing metal ions in place of radioactive fission products was prepared. The Zr was separated with 5 M HCl followed by eluting metal ions such as Ce, Nd, Cs, Rb, Ba, Sr, Ru, Rh, Pd, Ag and Cd with 12 M HCl on Dowex $1{\times}8$, anion exchange resin. The recovery of Zr was more than 95%. The purification of Zr was carried out on anion exchange resin, Dowex $1{\times}8$, in 5 M HCl in order to remove Mo causing isobaric effect during mass spectrometry. The method was applied to separate Zr from a spent PWR fuel. From mass spectrometric measurement, the purified Zr portion was not showed the isobars from other elements such as Mo and Sr.

  • PDF

Petrochemistry and Sr ${\cdot}$ Nd Isotopic Composition of foliated Granite in the Jeoniu Area, Korea (전주지역 엽리상화강암의 암석화학 및 Sr ${\cdot}$ Nd 동위원소 조성)

  • Shin, In-Hyun;Park, Cheon-Young;Jeong, Youn-Joong
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • Composition of the major and trace elements, Rb-Sr isochron age Sr-Nd isotope composition were determined for foliated in the Jeonju area, in the middle part of the Ogcheon Fold Bet, Korea. The geochemical characteristics of the Jeonju foliated granite indicate that the granite had been crystallized from a calc-alkaline series, and formed in a volcanic are environment. The isotopic compositions of the Jeonju foliated granite give Rb-Sr whole rock errorchron age of 168.2${\pm}$8 Ma(2${\sigma}$), corresponding to the middle Jurassic period, with the Sr initial ratio of 0.71354${\pm}$0.00031. $^{143}$Nd/$^{144}$Nd ratios, ${\varepsilon}$Nd and ${\varepsilon}$Sr values range from 0.511477 to 0.511744, -15.4${\sim}$-21.2, and +108.8${\sim}$+l42.6, respectively. Model ages were caculated to be 1.82${\sim}$2.89Ga. The isotopic data of Jeonju foliated granite indicate that the source material may have been derived from partial melting of continental crust materials.

  • PDF

Nd, Sr and Noble Gas Isotopic Compositions of Alkali Basaltic Rocks and Mantle Xenoliths in the Baegryongdo (백령도에 분포하는 알칼리 현무암과 맨틀 포획암의 Nd-Sr과 영족기체 동위원소 조성)

  • ;Nagao Keisuke;;Sumino Hirochika
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.523-532
    • /
    • 2002
  • The rare earth elements (REE) and Nd, Sr and noble gas isotopic compositions eHer'He, 4$^{\circ}$Arp6Ar) for the Quaternary alkali basaltic rocks and mantle xenoliths in the basaltic rocks from the Baegryongdo were investigated to decipher the origin of alkali basaltic magma and xenolith beneath the Sino-Korean craton. Analytical results are summarized as follows; (1) The alkali volcanic rocks with voluminous xenoliths which are represented by the Mg-olivine and clinopyroxene dominant spinel-lherzolite in the Baegryongdo consist mainly of the basalt-mugearite and basaltic andesite. (2) The REE pattern of alkali basaltic rocks characterized by high HREE is similar to that of oceanic island basalt (OlB). Relatively concordant REE patterns of the basaltic rocks suggest that the alkali basaltic magma be formed by the identical source materials. (3) The Nd-Sr isotopic data of the alkali basaltic rocks suggest that the alkali basaltic magma be originated from the depleted mantle source with a little contamination of the continental crustal materials. (4) The $^3$He/ $^4$He ratios in olivines of xenoliths ranging from 5.0${\pm}$1.lRa to 6.7${\pm}$1.3Ra are lower than that of MORB (ca. 8.0Ra). It suggest that the xenolith be derived from the subcontinental lithospheric mantle. However, the high $^3$Her'He value of 16.8${\pm}$3.IRa at 1800$^{\circ}$C fraction (sample no OL-7) might be resulted from the post-eruptive cosmogenic $^3$He. The 4OAr/ 36 Ar ratios in olivines of mantle xenoliths are comparable to that of atmospheric argon, and are much lower than that of the MORB type mantle. These facts can lead to conclusion that the olivine of the xenolith in the Baegryongdo is affected by the post-eruptive atmospheric contamination during the slow degassing process.

Geochemical Significance of $^{14}C$ Age from the Dongrae Hot Spring Water (동래온천수의 $^{14}C$ 연대의 지구과학적 의의)

  • Lee, Seung-Gu;Nakamura, Toshio;Kim, Tong-Kwon;Ohta, Tomoko;Kim, Hyoung-Chan;Lee, Tae-Jong
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.541-548
    • /
    • 2009
  • The Dongrae thermal water area located at the southeastern marginal part of the Korean Peninsula is one of the oldest hot springs in Korea. The Dongrae thermal water shows Na-Cl type of water chemistry, whereas the shallow cold groundwater is Ca(-Na)-$HCO_3$ type. In this paper, we discuss the age of the Dongrae hot spring, i.e. groundwater cycle among meteoric water-surface water-shallow groundwater-hot spring water. The $^{87}Sr/^{86}Sr$ ratios of the thermal water in Dongrae area range from 0.705663 to 0.705688 and are lower than those of groundwater, surface water and rain water as well as aquifer bearing granite. These Sr isotopic signatures in the Dongrae thermal water indicate that the circulation rate between thermal water and current meteoric water including groundwater, surface water and rain water in the Dongrae area should be very slow. The $^{14}C$ age of the Dongrae hot spring water range from $1,271{\pm}36$ BP(before present) to $2,467{\pm}36$ BP whereas that of the shallow groundwater is $-495{\pm}33$ BP. This suggests that the period of groundwater cycle among meteoric water, surface water, shallow groundwater and hot spring should be more than 1,270 years. Then, it also indicates that the present Dongrae hot spring may be a mixed water between the old thermal water heated for at least 1,270 years and the present shallow cold groundwater.

A Provenance Study of Iron Archaeological Sites in the Gyeongsang Province: Petrographic and Geochemical Approaches (경상지역 제철유적의 산지추정 연구: 암석기재학 및 지화학적 접근)

  • Jaeguk Jo;Seojin Kim;Jiseon Han;Su Kyoung Kim;Dongbok Shin;Byeongmoon Kwak;Juhyun Hong;Byeongyong Yu;Jinah Lim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.475-499
    • /
    • 2023
  • To infer the provenance of raw iron materials utilized in iron production at the archaeological sites in Gyeongsang province, petrographic and geochemical analyses were conducted for smelting samples and major iron ores sourced from ore deposits. The smelting samples excavated from various iron archaeological sites were classified into different types according to their refining processes, such as iron bloom, iron bloom slag, pig iron, pig iron slag, forging iron flake, smithery iron, iron flake, and arrowhead. These samples exhibited discernable differences in their mineralogical components and texture. The enrichments of major elements such as aluminum and calcium in silicate minerals of the residual slags and the high contents of trace elements such as nickel and copper in some iron-making relics reflect the characteristics of raw iron ores, and thus can be regarded as potential indicators for inferring the provenance of source materials. In particular, the compositional ranges of Pb-Sr isotope ratios for the iron smelting samples were classified into three categories: 1) those exhibiting similar ratios to those of the raw iron ores, 2) those enriched in strontium isotope ratio, and 3) those enriched in both lead and strontium isotope ratios. The observed distinct Pb-Sr isotope characteristics in the iron smelting samples suggest the potential contribution of specific additives being introduced during the high-temperature refining process. These results provide a new perspective on the interpretation of the provenance study of the iron archaeological samples in Gyeongsang province, particularly in terms of the potential contribution of additives on the refining process.