• Title/Summary/Keyword: Squint Mode

Search Result 4, Processing Time 0.017 seconds

A Study on Autofocus Method for Back-Projection Algorithm under the Squint Mode in Synthetic Aperture Radar (스퀸트 모드 SAR 영상 형성을 위한 역투영 알고리즘에서의 자동초점 기법 적용 연구)

  • Hwang, Jeonghun;Kim, Whan-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.81-89
    • /
    • 2017
  • Autofocus(AF) Method is essential to overcome the performance degradation due to motion measurement errors under airborne SAR environment. In this paper, back-projection algorithm(BPA) is applied to SAR raw data acquired under the squinted mode, and preprocessing algorithm of AF for BPA is investigated. To apply AF to SAR image effectively, image backplane rotation method and doppler location alignment function for BPA are proposed. The proposed method is applied to SAR raw data acquired in a flight test and shows excellent performance improvement in real data.

Development of an Efficient Processor for SIRAL SARIn Mode

  • Lee, Dong-Taek;Jung, Hyung-Sup;Yoon, Geun-Won
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.335-346
    • /
    • 2010
  • Recently, ESA (European Space Agency) has launched CryoSAT-2 for polar ice observations. CryoSAT-2 is equipped with a SIRAL (SAR/interferometric radar altimeter), which is a high spatial resolution radar altimeter. Conventional altimeters cannot measure a precise three-dimensional ground position because of the large footprint diameter, while SIRAL altimeter system accomplishes a precise three-dimensional ground positioning by means of interferometric synthetic aperture radar technique. In this study, we developed an efficient SIRAL SARIn mode processing technique to measure a precise three-dimensional ground position. We first simulated SIRAL SARIn RAW data for the ideal target by assuming the flat Earth and linear flight track, and second accessed the precision of three-dimensional geopositioning achieved by the proposed algorithm. The proposed algorithm consists of 1) azimuth processing that determines the squint angle from Doppler centroid, and 2) range processing that estimates the look angle from interferometric phase. In the ideal case, the precisions of look and squint angles achieved by the proposed algorithm were about -2.0 ${\mu}deg$ and 98.0 ${\mu}deg$, respectively, and the three-dimensional geopositioning accuracy was about 1.23 m, -0.02 m, and -0.30 m in X, Y and Z directions, respectively. This means that the SIRAL SARIn mode processing technique enables to measure the three-dimensional ground position with the precision of several meters.

Imaging an Unknown Velocity Target in Inverse SAR (Inverse SAR에서 속도를 모르는 움직이는 물체의 이미징 알고리즘)

  • 양훈기;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.796-804
    • /
    • 1994
  • This paper presents Inverse SAR imaging algorithm for a unknown velocity target and a real ISAR data is processed and applied to the algorithm. The real ISAR data is obtained by transmitting a number of pulse modulated by a stepped-frequency method and the received data are undersampled. We present a method applicable for the case of a undersampled data base. In this method, the original echoed signal is mixed with a reference signal to make it unaliased, followed by being interpolated. Target`s velocity required for the algorithm is estimated via subaperture processing and after the coordinate transformation into squint-mode SAR with the estimated velocity, a recently proposed SAR/ISAR imaging algorithm derived without any approximation is utilized to produce the output image. We also propose an ISAR image scheme that is usable when a target changes its velocity during ISAR data acquisition time.

  • PDF

Optical Misalignment Cancellation via Online L1 Optimization (온라인 L1 최적화를 통한 탐색기 비정렬 효과 제거 기법)

  • Kim, Jong-Han;Han, Yudeog;Whang, Ick Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1078-1082
    • /
    • 2017
  • This paper presents an L1 optimization based filtering technique which effectively eliminates the optical misalignment effects encountered in the squint guidance mode with strapdown seekers. We formulated a series of L1 optimization problems in order to separate the bias and the gradient components from the measured data, and solved them via the alternating direction method of multipliers (ADMM) and sparse matrix decomposition techniques. The proposed technique was able to rapidly detect arbitrary discontinuities and gradient changes from the measured signals, and was shown to effectively cancel the undesirable effects coming from the seeker misalignment angles. The technique was implemented on embedded flight computers and the real-time operational performance was verified via the hardware-in-the-loop simulation (HILS) tests in parallel with the automatic target recognition algorithms and the intra-red synthetic target images.