• 제목/요약/키워드: Squeeze cast

검색결과 47건 처리시간 0.024초

용탕단조한 Ni-aluminide 보강 AC8A기 복합재료의 조직 및 특성 (Microstructure and Properties of Squeeze Cast AC8A MMC Reinforced with Ni-aluminide)

  • 주대헌;김명호;권숙인;김준수
    • 한국주조공학회지
    • /
    • 제17권2호
    • /
    • pp.195-206
    • /
    • 1997
  • AC8A matrix composites reinforced with Ni-aluminide were fabricated by squeeze casting process, and the characteristics and nature of the growth of Ni-aluminide phases at the interface between nickel and aluminurn were investigated. In the as-cast composites, the reaction layer between Ni skeleton and aluminum matrix was found to be $NiAl_3$, regardless of the casting temperatures and the kinds of preforms. During high temperature solution treatment the $NiAl_3$ layer grew and formed new $Ni_2Al_3$ layer. Because of presence of the porosity formed by Kirkendall effect at the interface between $NiAl_3$ and aluminum matrix, the tensile strength of composites was inferior to that of AC8A matrix alloy. However, the composites exhibited superior wear resistance due to the formation Ni-aluminide intermetallic phases. Composite A, of which Ni skeleton was fully transformed into Ni-aluminide, shows better wear resistance than that of composite B which still possessed some unreacted Ni skeleton.

  • PDF

용탕단조 Mg-Zn-Zr 합금의 미세조직 및 강화기구 (Microstructure and Strengthening Behavior in Squeeze Cast Mg-Zn by Addition of Zr)

  • 오상섭;황영하;김도향;홍준표;박익민
    • 한국주조공학회지
    • /
    • 제19권1호
    • /
    • pp.38-46
    • /
    • 1999
  • Microstructural characteristics and strengthening behavior in Mg-5wt%Zn-0.6wtZr alloys have been investigated by a combination of optical, secondary electron and transmission electron microscopy, differential thermal analysis, and hardness and tensile, creep property measurements. The result have been compared with those of Mg-5wt%Zn alloys. The as-squeeze cast microstructure consisted of dendrite ${\alpha}-Mg$, interdendrite or intergranular $Mg_7Zn_3$ and fine dispersoids of $ZnZr_2$. The size of secondary solidification phases in Mg-5wt%Zn-0.6wtZr alloys was significantly smaller than that of the Mg-5wt%Zn alloys due to the existence of fine dispersoid of $ZnZr_2$ which also effected the refinement of grain size. TEM study showed that the main cause of age hardening is formation of fine rodlike ${\beta}_1\;'$ precipitates as well as fine $ZnZr_2$ dispersoids. Due to the observed microstructural characteristics mechanical propeties of Mg-5wt%Zn-0.6wtZr alloys was found to be superior to those of Mg-5wt%Zn alloys.

  • PDF

용탕단조 마그네슘합금의 조직과 기계적 성질에 미치는 Zn과 Zr의 영향 (Effect of Zinc and Zirconium on Microstructure and Mechanical Property in Squeeze Cast Magnesium Alloy)

  • 최영두;최정철;장시영
    • 한국주조공학회지
    • /
    • 제19권5호
    • /
    • pp.403-409
    • /
    • 1999
  • Mg-Zn-Zr ternary alloys containing 6wt% Zn and (0, 0.4, 0.6)wt% Zr, which is added for grain refinement, can be cast into complex shape by squeeze casting. The influence of Zn and Zr as additional elements on microstructure and mechanical characteristics is investigated by OM, SEM, WDX, XRD and microvickers hardness measurement. The microstructure of Mg-Zn-Zr alloys consists of primary ${\alpha}-Mg$ and MgZn eutectic compound between dendrites. The grain size is decreased from $136{\mu}m$ to $97\;{\mu}m$ by Zr addition, resulting in that the hardness is increased from 42Hv to 59Hv. Furthermore, the grain size is changed to $83{\beta}$ and the hardness is increased to 65Hv by additional infiltration pressure. These results indicate that the Zr addition and additional infiltration pressure are effective for grain refinement acting as an important factor to increase the hardness. The increment in hardness by the Zr addition is slightly larger than that by the additional infiltration pressure.

  • PDF

용탕단조 Al-Cu-Si-Mg합금의 열처리시 제2응고상의 분해거동 (Decomposition Behavior of Secondary Solidification Phase During Heat Treatment of Squeeze Cast Al-Cu-Si-Mg)

  • 김유찬;김도향;한요섭;이호인
    • 한국주조공학회지
    • /
    • 제17권6호
    • /
    • pp.560-568
    • /
    • 1997
  • The dissolution behavior of secondary solidification phases in squeeze cast Al-3.9wt%Cu-1.5wt%Si-1.0wt%Mg has been studied using a combination of optical microscope, image analyzer, scanning electron microscope(SEM), energy dispersive spectrometer(EDS), X-ray diffractometer(XRD) and differential thermal analyzer (DTA). Special emphasis was placed on the investigation of the effects of the nonequilibrium heat treatment on the dissolution of the second solidification phases. Ascast microstructure consisted of primary solidification product of ${\alpha}-Al$ and secondary solidification products of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$. Equilibrium and non-equilibrium solution treatments were carried out at the temperatures of $495^{\circ}C$, $502^{\circ}C$ and $515^{\circ}C$ for 3 to 5 hours. The amount of the dissolved secondary phases increased with increasing solution treatment temperature, for example, area fractions of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$ were approximately 0%, 1.6% and 4.2% after solution treatment at $495^{\circ}C$ for 5hours, and were approximately 0%, 0.36% and 2% after solution treatment at $515^{\circ}C$ for 5hours. The best combination of tensile properties was obtained when the as-cast alloy was solution treated at $515^{\circ}C$ for 3hours followed by aging at $180^{\circ}C$ for 10 hours. Detailed DTA and TEM study showed that the strengthening behavior during aging was due to enhanced precipitation of the platelet type fine ${\theta}'$ phase.

  • PDF

반응 용탕단조한(AI203 . SIO2+Ni)/Al하이브리드 금속복합재료의 파괴거동 특성 (Fraccture Behavior of Recation Squeeze Cast ($AI_20_3{\cdot}SiO_2+Ni$)/Al Hybrid Metal Matrix Composites)

  • 김익우;김상석;박익민
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.67-70
    • /
    • 2000
  • Mechanical properties of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites fabricated by the reaction squeeze casting were compared with those of (15%$AI_20_3{\cdot}SiO_2$)/Al composites. Intermetallic compound formed by reaction between molten aluminum and reinforcing powder was uniformly distributed in the Al matrix. These intermetallic compounds were identified as $Al_3$NI using EDS and X-ray diffraction analysis. Microhardness and flexural strength of hybrid composites were higher than that of (15%$AI_20_3{\cdot}SiO_2$)/Al Composite. In-Situ fracture tests were Conducted on (15%$AI_20_3{\cdot}SiO_2$)/Al Composites and (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites to identify the microfracture process. It was identified from the in-situ fracture test of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al composites, microcracks were initiated mainly at the short fiber / matrix interfaces. As the loading was continued, the crack propagated mainly along the separated interfacial regions and the well developed shear bands. It was identified from the in-situ fracture test of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites, microcracks were initiated mainly by the short fiber/matrix interfacial debonding. The crack proceeded mainly through the intermetallic compound clusters

  • PDF

용탕단조법에 의한 고강도 Mg-Li-Al합금 제조 (Fabrication of High Strength Mg-Li-Al Alloys by Squeeze Casting Process)

  • 한창화;황영하;김영우;김도향;홍준표
    • 한국주조공학회지
    • /
    • 제17권3호
    • /
    • pp.267-275
    • /
    • 1997
  • Fabrication of high strength Mg-Li-Al alloys by squeeze casting was established by the stabilization of melt and mold temperatures, applied pressure and the refining method. The entrapment of inclusions during pouring was prevented using 30 ppi alumina foam filter. The as-cast microstructure consists of a mixture of ${\alpha}$ and ${\beta}$ phases including AILi and $MgLi_2$, Al particles, which are distributed in the ${\beta}$ matrix. The grain sizes of gravity and squeeze casting alloys were 288 ${\mu}m$ and 207 ${\mu}m$ respectively. The addition of Al in Mg-Li alloys promoted the formation of second phase particles, which were adjusted to optimize the properties of Mg-Li-Al alloys. The Mg-10wt%Li-5wt%Al alloy after heat treatment at $350^{\circ}C$ for 1 hour showed the maximum hardness value. This is due to the facts that the amounts of ${\alpha}$ and ${\beta}$ phases and their distributions are dependent upon the solution treatment temperature, and that the amounts of AILi and $MgLi_2Al$ particles are dependent upon the Al content.

  • PDF

용탕가압침투법에 의한 알루미늄 보레이트 강화 Mg-3Al-2Ag-1Zn 금속복합재료의 물성 (Material Properties of Squeeze Infiltrated Al Borate Whisker Reinforced Mg-3A1-2Ag-1Zn Matrix Composites)

  • 강호준;배건희;박용하;한상호;박용호;조경목;박익민
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.791-795
    • /
    • 2005
  • In this study, aluminum borate whisker reinforced Mg-3Al-2Ag-1Zn matrix composites were fabricated by the squeeze infiltration technique. The purpose is to develop materials for elevated temperature applications. Microstructure observation revealed successful fabrication of the metal matrix composites, namely no cast defects such as porosity and matrix/reinforcement interface delamination etc. High temperature hardness and creep rupture properties were improved significantly with addition of Ag to the Al borate whisker reinforced Mg alloy composite. $Mg_3Ag$ phase formed during aging heat treatment could improve creep properties of the Mg matrix composites.

용탕 단조 Al-3.0 wt%Si 합금의 강도에 미치는 합금 원소 및 열처리 조건의 영향 (Effects of Alloying Element and Heat-Treatment Condition on the Strength of Squeeze-Casted Al-3.0 wt%Si Alloy)

  • 이학주;황재형;권해욱
    • 한국주조공학회지
    • /
    • 제26권6호
    • /
    • pp.249-257
    • /
    • 2006
  • The effects of alloying element and the condition of heat-treatment on the strength of squeeze-cast Al-3.0 wt%Si alloy were investigated. The strength of the alloy without grain refinement was increased with increase Cu content upto 3.0 wt% and rather decreased beyond that. The tensile strength of the alloy with grain refinement increased with Cu content upto 3.0 wt% and not changed beyond that. The strength of the alloy without grain refinement increased with the Mg content. The tensile strength with grain refinement increased with the Mg content upto 0.50 wt% and then decreased beyond that. The strength of the grain refined alloy increased by individual and simultaneous additions of Cu and Mg and the maximum strength was obtained with Al-3.0 wt%Si-4.5 wt%Cu-0.50 wt%Mg alloy. The optimum heat-treatment condition for this alloy was obtained.

하이브리드 Mg 복합재료의 진동 감쇠능 및 고온 특성평가 (High temperature and damping properties of squeeze cast Mg hybrid Metal Matrix Composites.)

  • 장재호;김봉룡;최일동;조경목;박익민
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.143-146
    • /
    • 2002
  • Mg alloy is the lightest material of structural materials and is noticed for lightweight automotive parts because of excellent castability, superior ductility and damping capacity than Al alloy. But Mg Alloy is poor corrosion resistance and high temperature creep properties. In this study, Mg Matrix Composites were fabricated by squeeze casting method to improve high temperature creep properties and damping capacity. Hybrid Mg composites reinforced with Alborex, graphite particle, and SiCp was improved creep properties and damping capacity compared with Mg alloy. Compared to the length ($9\mu\textrm{m}, 27\mu\textrm{m}, 45\mu\textrm{m} etc.$), Hybrid Mg composites reinforced with SiCp, one of the most superior of the length and Alborex were more superior than those reinforced with graphite particle and Alborex in mechanical properties, creep characteristics, and damping capacity, etc.

  • PDF