• 제목/요약/키워드: Square section

검색결과 542건 처리시간 0.027초

사각 단면 노즐을 장착한 초음속 터빈유동장의 수치해석 (Numerical Analysis for a Supersonic Turbine having Square Section Nozzles)

  • 박편구;정은환;김진한
    • 한국유체기계학회 논문집
    • /
    • 제14권1호
    • /
    • pp.55-60
    • /
    • 2011
  • Numerical analyses of a turbine redesigned to achieving the weight reduction by equipping square nozzles and the original turbine have been conducted and the results have been compared. The results show that the turbine with square section nozzles has more even flow distribution at the first row rotor inlet and less inactive areas but the loss induced by wake is increased. Despite the wake loss, the newly designed turbine shows better performance than the original one. It has also been found that the turbine performance can be improved by reshaping its stator and second row rotor.

평금형을 통한 중공형재 압출의 유한요소 해석 (Finite Element Analysis for Extrusion of Hollow Shaped Section Through Square Die)

  • 이춘만;이승훈;조종래
    • 소성∙가공
    • /
    • 제7권4호
    • /
    • pp.375-381
    • /
    • 1998
  • This paper presents development of finite element simulation program and analysis of hot extrusion through square dies with a mandrel. The design of extrusion dies is still an art rather than science. Die design for a new extrusion process is developed from through in-plant trials. In the present paper, a three-dimensional steady-state finite element simulation program is developed. Steady-state assumption is used for both the analyses of deformation and temperature. The developed program is effectively used to simulate hollow extrusion of several sections. Distributions of temperature effective strain rate, mean strain rate and mean stress are studied for an effective design of extrusion dies.

  • PDF

횡구속 콘크리트의 압축 응력-변형률 모델 : Part II. 사각단면 부재 (Stress-Strain Model for Laterally Confined Concrete : Part II. Rectangular Sectional Members)

  • 선창호;정혁창;김익현
    • 한국지진공학회논문집
    • /
    • 제21권1호
    • /
    • pp.59-67
    • /
    • 2017
  • Due to a lack of the hoop action of lateral reinforcements the effective confining force in rectangular sections reduces compared to circular ones. Therefore, the stress-strain model obtained from the experimental data with circular sections overestimates the lateral confinement effect in rectangular sections, which evaluates seismic safety margin of overall structural system excessively. In this study experiments with laterally-confined square sections have been performed and the characteristic values composing stress-strain model have been analyzed. With introduction of section coefficients, in addition, the new unified stress-strain model applicable to square sections as well as circular ones has been proposed.

원형봉에서 정사각재 인발공정의 유한요소 해석 (Finite Element Analysis for the Drawing of Square Rod from Round Bar)

  • 최영;김호창;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.205-209
    • /
    • 1998
  • Unlike the drawing of round section from round bar, the shaped drawing like polygonal section is known to have influence not only drawing stress but also comer filling. Therefore, this study analyze the drawing process of suqare rod from round bar using nonsteady state rigid-plastic FEM. To investigate effects of process variables of the drawing process of square rod from round bar, FE-simulations with variety of reduction in area and semi-die angle for a given frictional condition have been conduction. By this results, it has to suggest optimal process condition on the drawing stress and the comer filling. In addition, it has determined forming limit considering necking and bulging.

  • PDF

Finite-Slab element investigation of square-to-round multipass shape rolling

  • 이상매;김낙수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 춘계학술대회 논문집
    • /
    • pp.251-255
    • /
    • 1991
  • The primary objectives of the rolling process are to reduce the cross section of the incoming material while improving its properties and to obtain the desired section at the exit from the rolls. Many engineering metals, suchas aluminium alloys, copper alloys, and steels are often cast intoingots and are then further processed byhot rolling into blooms, slabs, and billets, which are subsequently rolled into other products such as plate, sheet, tube, rod, bar, and structural shapes. In shape rolling a round or square bar is rolled in several passes into various shapes. During eachpass, the bar elongates as well as spreads. Thus, a very complex three-dimensional metal flow takes place. In this paper TASKS results for the simulation of a 7 pass square-to-round shape rolling are presented. The results are verified by comparing it with experimental results from a previous study conducted at the Battelle Columbus Labs

Research on the Solar Concentrating Optical System for Solar Energy Utilization

  • Duan, Yimeng;Yang, Huajun;Jiang, Ping;Wang, Ping
    • Journal of the Optical Society of Korea
    • /
    • 제17권5호
    • /
    • pp.371-375
    • /
    • 2013
  • To improve the utilization efficiency of solar energy, a new solar optical concentrating system composed of a parabolic reflector with a square cross-section, a hyperbolic reflector with a square cross-section and two converging convex lenses has been designed. The proposed method can simultaneously focus and shape sun light into a square pattern on the solar panel. In addition, the total reflection property of photonic crystal within the range of the visible sunlight spectrum has been analyzed. Finally, the relationship between solar concentrating multiples and the diameter of the primary mirror has been discussed.

강소성 유한요소법을 이용한 원형봉에서 정사각재 인발공정에 관한 연구 (A Study on the Drawing Process of Square Rod from Round Bar by Using the Rigid-Plastic Finite Element Method)

  • 김호창;김용철;최영;김병민
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.145-151
    • /
    • 1998
  • Unlike the drawing of round section from round bar, the shaped drawing like polygonal section is known to have influence not only drawing stress but also corner filling. Therefore. this study analyze the drawing process of suqare rod from round bar using nonsteady state rigid-plastic FEM. To investigate effects of process variables of the drawing process of square rod from round bar, FE-simulations with variety of reduction in area and semi-die angle for a given frictional condition have been conducted. By this results, it has to suggest optimal process condition on the drawing stress and the corner filling. In addition, it has determined forming limit considering necking and bulging.

  • PDF

고준위폐기물다발의 단면형상 변화에 따른 가압경수로(PWR)용 고준위폐기물 처분용기의 구조해석 (A Structural Analysis of the SNF(Spent Nuclear Fuel) Disposal Canister with the SNF Basket Section Shape Change for the Pressurized Water Reactor(PWR))

  • 권영주
    • 한국전산구조공학회논문집
    • /
    • 제25권1호
    • /
    • pp.37-49
    • /
    • 2012
  • 가압경수로(PWR)에서 배출되는 고준위폐기물을 지하 500m의 화강암 암반의 처분장에 장기간(약 10,000년 동안) 처분하기 위하여 여러 구조적 안전성 평가수행을 통하여 처분용기모델이 개발되었다. 기존에 설계 개발된 가압경수로용 처분용기 모델은 구조적으로 처분용기 내부에 정사각형 단면의 네 개의 고준위폐기물다발이 처분용기 단면의 중심에 대칭되게 나란히 배열된 형태를 취하고 있다. 그러나 이와 같은 배열형태가 최적의 구조인지는 아직 결정할 수 없다. 특히 경량화하는 데에는 여전히 문제가 있다. 이러한 문제를 해결하는 방법은 처분용기 단면 중심에 대하여 대칭으로 배열된 네 개의 고준위폐기물다발의 단면형상을 변경시키는 것이다. 단면형상을 변경시키는 방법에는 정사각형 형상을 유지시키면서 단면을 회전시키는 방법과 정사각형 형상을 다른 단면형상으로 변경시키는 두 가지 방법이 있다. 기 수행된 연구를 통하여 정사각형 단면형상을 유지시키면서 단면을 회전시키면 회전각도가 $30{\sim}35^{\circ}$인 배열구조의 처분용기가 나란한 정사각형 배열구조보다 구조적으로 더 안정적이어서 경량화할 수 있음을 알 수 있었다. 그러나 이 회전한 배열구조의 처분용기가 최적인지는 역시 아직 결정할 수 없다. 왜냐하면 정사각형이 아닌 다른 단면형상의 구조물에 대해서는 아직 구조적으로 더 안정한지가 확인되지 않았기 때문이다. 따라서 처분용기 단면 중심면에 대하여 대칭성을 유지하면서 고준위폐기물다발의 단면형상이 정사각형이 아닌 다른 단면형상의 처분용기구조에 대한 구조해석이 필요하다. 본 연구에서는 네 개의 고준위폐기물다발이 처분용기 중심 면에 대하여 대칭적으로 배열되면서 단면형상이 여러 가지로 변화된 가압경수로용 처분용기에 대하여 구조해석을 수행하였다. 구조해석을 수행한 결과 기존의 설계 개발된 처분용기 단면의 중심에 대칭되게 나란히 고준위폐기물다발이 배열된 정사각형 단면의 처분용기보다 다발의 단면형상이 원형인 처분용기가 구조적으로 좀 더 안정성이 있음이 밝혀졌다.

리브 형상 및 개수에 따른 사각플라스틱 페트병의 강성보강에 관한 연구 (A study of Improvement of Stiffness for Plastic PET bottle with Different Geometries and Numbers of Rib)

  • 이영훈;박범진;정의철;오정길;홍석관
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.33-41
    • /
    • 2023
  • Excessive use of plastic bottles contributes to a significant environmental issue due to the high volume of plastic waste generated. To address this, efforts are needed to reduce the weight of plastic bottles. However, indiscriminate weight reduction may compromise the essential rigidity required for plastic bottles. Extensive research on rib shape for pressure vessels are exists, but there is a few research of rib shapes to enhance the stiffness of plastic bottles. The following results were obtained from the analyses conducted in this study. 1) Among the rib cross-sections of square, trapezoid, and triangle, the buckling critical load of PET bottles with square-shaped ribs is improved by about 14% compared to the buckling critical load of PET bottles without ribs. 2) The buckling critical load is improved by about 18% when a square-shaped rib with an aspect ratio of 0.2 is applied, compared to the buckling critical load of the bottle without the rib. 3) When longitudinal and transverse square ribs were applied to the axial direction of the PET bottle, the buckling critical load was improved by about 32% and 58% compared to the buckling critical load of the PET bottle without ribs, respectively, indicating that applying longitudinal ribs is effective in reinforcing the stiffness of PET bottles. 4) When 14 transverse ribs were applied, the maximum improvement was about 48% compared to the buckling critical load of the plastic bottle without ribs. 5) When 3 longitudinal ribs were applied on each side, the maximum improvement was about 76% compared to the buckling critical load of the bottle without ribs. Therefore, it was concluded that for effective stiffness reinforcement of a 500ml square bottle with a thickness of 0.5mm, 3 square-shaped ribs with an aspect ratio of 0.2 should be applied in the longitudinal direction relative to the axial direction of the bottle.

Modelling and experiment of semi rigid joint between composite beam and square CFDST column

  • Guo, Lei;Wang, Jingfeng;Zhang, Meng
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.803-818
    • /
    • 2020
  • Semi-rigid connections with blind bolts could solve the difficulty that traditional high strength bolts were unavailable to splice a steel/composite beam to a closed section column. However, insufficient investigations have focused on the performance of semi-rigid connection to square concrete filled double-skin steel tubular (CFDST) columns. In this paper, a component model was developed to evaluate the mechanical behavior of semi-rigid composite connections to CFDST columns considering the stiffness and strength of column face in compression and column web in shear which were determined by the load transfer mechanism and superstition method. Then, experimental investigations on blind bolted composite joints to square CFDST columns were conducted to validate the accuracy of the component model. Dominant failure modes of the connections were analyzed and this type of joint behaved semi-rigid manner. More importantly, strain responses of CFDST column web and tubes verified that stiffness and strength of column face in compression and column web in shear significantly affected the connection mechanical behavior owing to the hollow part of the cross-section for CFDST column. The experimental and analytical results showed that the CFDST column to steel-concrete composite beam semi-rigid joints could be employed for the assembled structures in high intensity seismic regions.