• 제목/요약/키워드: Square enclosure

검색결과 71건 처리시간 0.017초

격판이 존재하는 정사각형 밀폐공간내의 자연대류에 대한 PIV 계측 (PIV Measurement of Natural Convection in a Square Partitioned Enclosure)

  • 김광희;김유곤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.708-713
    • /
    • 2001
  • The paper presented some results of a experimental study of natural convection in partitioned 2D square enclosure. The square enclosure consist of two adiabatic vertical walls and the upper cold and the lower hot walls. A partition is positioned perpendicularly at the center of left vertical insulated wall The PIV mesaurements were performed with the variations of the partition length and inclination of enclosure. The working fluid is water with a Prandtl number of 6.996 at $20^{\circ}C$ temperature. A captured images were calculated by using a Cross-Correlation(Multi-frame/Single-exposure) method.

  • PDF

격판이 존재하는 경사진 정사각형 밀폐공간 내의 자연대류유동에 관한 실험적 연구 (Experimental Study for Natural Convection Flow in an Inclined Partitioned Square Enclosure)

  • 김광희;김유곤
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.310-317
    • /
    • 2002
  • In the present study, an experimental study of natural convection in a partitioned 2D square enclosure has been carried out. The square enclosure consist of two adiabatic vertical walls and the upper cold and the lower hot walls. A partition is positioned perpendicularly at the center of the left vortical insulated wall. The PIV measurements were performed with the variations of Rayleigh number, partition length and inclination of the enclosure. The working fluid is water with Prandtl number of 6.996 at 20$\^{C}$. The captured images were analyzed by using a cross-correlation (two-frame/single-exposure) PIV method.

수평격판을 갖는 정사각형 밀폐공간내에서 자연대류 유동 및 열전달 (Natural Convective Flow and Heat Transfer in a Square Enclosure with a Horizontal Partition)

  • 정인기;김점수;송동주
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2304-2314
    • /
    • 1993
  • Natural convective flow and heat transfer in a two-dimensional square enclosure fitted with a horizontal partition are investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was situated perpendicularly at the one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of length, position and thermal conductivity of the partition, and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection is resulted in a sudden rise of overall heat transfer, but the increase of length of partition is significantly restrained the increase of Nusselt number. The maximum heat transfer was shown just before the transition of the direction of oscillating flow. An oscillatory motion of flow was perfectly shown the stability with the decrease of the length of partition and Rayleigh number. Also, the heat transfer was raised with the increase of the thermal conductivity in proportion to the increase of the length of partition. The stability and oscillation of flow are affected by the position of partition.

정사각형 밀폐공간내에서 수평격판에 의한 자연대류의 진동현상 (Oscillatory Motion of Natural Convection in a Square Enclosure with a Horizontal Partition)

  • 김점수;정인기;송동주
    • 설비공학논문집
    • /
    • 제5권4호
    • /
    • pp.285-294
    • /
    • 1993
  • An oscillatory motion of natural convection in a two-dimensional square enclosure fitted with a horizontal partition is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was positioned perpendicularly at the mid-height of one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of the partition length and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection has perfectly shown the periodicity with the decrease of Rayleigh number, and the stability was reduced to a chaotic state with the increase of Rayleigh number. The period of oscillation gets shorten with the decrease of the partition length and the increase of Rayleigh number. The frequency of oscillation obtained by the variations of stream function is more similar to the experimental results than that of the average Nusselt number. The stability of oscillation grows worse with the increase of Rayleigh number. The transition Rayleigh number for the chaos is gradually decreased with the increase of the partition length.

  • PDF

수평격판으로 분리된 정사각형 밀폐공간내의 층류 자연대류 해석 (An investigation of laminar natural convection in a square partitioned enclosure)

  • 김점수;정인기
    • 설비공학논문집
    • /
    • 제9권3호
    • /
    • pp.312-322
    • /
    • 1997
  • The natural convective flow in a two-dimensional square enclosure with horizontal partitions is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and two identical partitions were positioned perpendicularly at the mid-height of the right and left walls, respectively. The governing equations are solved by using the finite element method with Galerkin method. Calculations are made for different partition lengths, partition conductivites, and Rayleigh numbers based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). An oscillatory motion of the natural convective flow is affected significantly by the variation of the gap width and Rayleigh number. When the gap width is comparatively short, the heat transfer rate is raised with the increase of the thermal conductivity of partitions. However, for sufficiently large gap widths at higher Rayleigh numbers, the average Nusselt numbers of the conductive partitions are smaller than those of the adiabatic partitions.

  • PDF

제어판이 부착된 수평격판에 의해 분리되는 밀폐공간내의 난류 자연대류 열전달 특성 (Turbulent natural convective heat transfer charateristics in a square enclosure with control plates attached at the horifontal partition)

  • 김점수
    • 설비공학논문집
    • /
    • 제12권2호
    • /
    • pp.150-160
    • /
    • 2000
  • Turbulent natural convective flow and heat transfer in a square enclosure with horizontal partition are investigated numerically. The enclosure is composed of a lower hot and a upper cold horizontal walls and adiabatic vertical walls. Partitions carried with the upward, downward, and both control plates are attached perpendicularly to the one of the vertical insulated walls, respectively. The low Reynolds number $k-\varepsilon$ model is adopted to calculate the turbulent thermal convection. The governing equations are solved by using the finite element method with Galerkin method. The computations have been carried out by varying the length of partition, the position of control plates, and the Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height for water(Pr=4.95). When the control plates are attached at the edge of partition, the stability of oscillating flow grows wrose with the increase of Rayleigh number and the partition length. The heat transfer rate has been reducer than that of no control plate due to the restraint of control plates with the increase of Rayleigh number.

  • PDF

정사각형 밀폐공간 내에 있는 고온부로부터의 자연대류 열전달 (Natural Convection Heat Transfer from a Hot Body in s Square Enclosure)

  • 권순석;정태현;권용일
    • 설비공학논문집
    • /
    • 제4권3호
    • /
    • pp.147-154
    • /
    • 1992
  • Laminar natural convection heat transfer from a hot body in a square enclosure has been studied for various center positions of a hot square at Grashof number $Gr=1.5{\times}10^5$, Prandtl number Pr=0.71 and dimensionless thermal conductivity $k_g/k_f=14710$. The natural convection at the center position of a hot square; $X_c$, $Y_c=0.5$, 0.2 shows the most strong and at $X_c$, $Y_c=0.5$, 0.7 the most weak. The total mean Nusselt number at $X_c$, $Y_c=0.5$, 0.2 was 7.4% higher than that at $X_c$, $Y_c=0.2$, 0.5. The total mean Nusselt number at $X_c$, $Y_c=0.5$, 0.7 was 5.0% lower than that at $X_c$, $Y_c=0.3$, 0.5.

  • PDF

발열체가 있는 열린 공간내에서의 자연대류-복사열전달 현상에 관한 수치적 연구 (Numerical Study On Combined Natural Convection-Radiation In Partially Open Square Compartments with A Heater)

  • 손봉세;한규익;서석호;이재효;김태국
    • 한국화재소방학회논문지
    • /
    • 제9권1호
    • /
    • pp.10-19
    • /
    • 1995
  • Study on combined natural convection-radiation In partially open square enclosures filled with absorbing-anisotropic scattering media is performed. A heater block located in the enclosure causes the natural circulation of the fluid in the enclosure which results In significant in-flow of the cold fluid through the partially open wall. Four different locations of the heater are considered to observe the effect of the heater locations on the resulting heat transfer. Results obtained from the combined convection-radiation analyses show much stronger circulation of t he fluid inside the enclosure as compared to those obtained from the pure convection analyses. As the ratio of the open area is Increased, the inflow of the cold fluid and the circulation of the fluid inside the enclosure is increased causing lower fluid temperature Inside the enclosure. It is shown that the location of the heater influences the circulation and heat transfer significantly by showing stronger circulations and more uniform temperature distributions for the cases where the heater is located on the bottom wall as compared to those for the cases where the heater is located on the upper part wall of the enclosure. For pure absorbing medium, the expected circulation in the fluid is relatively week as compared to those with absorbing-scattering medium due to the smaller wall heating as the radiant heat is used to heat the fluid instead. The forward anisotropic scattering phase function is shown to increase the fluid circulation further as compared to the isotropic scattering medium.

  • PDF

내부 발열유체를 가진 정사각 밀폐공간에서의 난류자연대류 (Turbulent Natural Convection in a Square Enclosure Containing Internal Heat Generating Fluid)

  • 이재헌;김석현;정종화;박만흥
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.112-121
    • /
    • 1992
  • 본 연구에서는 상기 연구의 연장으로서 Prandtl수가 6.05인 내부발열유체가 경사진 정사각 난류자연대류유동, 온도분포 및 열전달량의 분포를 수치적인 방법으로 예측하였다. 벽면 깅이의 1/2를 특성길이로 하는 Rayleigh수의 범위는 1*$10^{6}$ ~1*$10^{9}$ 으로 선택하였으며 경사각도는 0˚, 15˚, 30˚및 45˚로 선택하였다.

Incompressible smoothed particle hydrodynamics modeling of thermal convection

  • Moballa, Burniadi;Chern, Ming-Jyh;Odhiambo, Ernest
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.211-235
    • /
    • 2013
  • An incompressible smoothed particle hydrodynamics (ISPH) method based on the incremental pressure projection method is developed in this study. The Rayleigh-B$\acute{e}$nard convection in a square enclosure is used as a validation case and the results obtained by the proposed ISPH model are compared to the benchmark solutions. The comparison shows that the established ISPH method has a good performance in terms of accuracy. Subsequently, the proposed ISPH method is employed to simulate natural convection from a heated cylinder in a square enclosure. It shows that the predictions obtained by the ISPH method are in good agreements with the results obtained by previous studies using alternative numerical methods. A rotating and heated cylinder is also considered to study the effect of the rotation on the heat transfer process in the enclosure space. The numerical results show that for a square enclosure at, the addition of kinetic energy in the form of rotation does not enhance the heat transfer process. The method is also applied to simulate forced convection from a circular cylinder in an unbounded uniform flow. In terms of results, it turns out that the proposed ISPH model is capable to simulate heat transfer problems with the complex and moving boundaries.