• Title/Summary/Keyword: Square Root

Search Result 2,665, Processing Time 0.028 seconds

Fine-image Registration between Multi-sensor Satellite Images for Global Fusion Application of KOMPSAT-3·3A Imagery (KOMPSAT-3·3A 위성영상 글로벌 융합활용을 위한 다중센서 위성영상과의 정밀영상정합)

  • Kim, Taeheon;Yun, Yerin;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1901-1910
    • /
    • 2022
  • Arriving in the new space age, securing technology for fusion application of KOMPSAT-3·3A and global satellite images is becoming more important. In general, multi-sensor satellite images have relative geometric errors due to various external factors at the time of acquisition, degrading the quality of the satellite image outputs. Therefore, we propose a fine-image registration methodology to minimize the relative geometric error between KOMPSAT-3·3A and global satellite images. After selecting the overlapping area between the KOMPSAT-3·3A and foreign satellite images, the spatial resolution between the two images is unified. Subsequently, tie-points are extracted using a hybrid matching method in which feature- and area-based matching methods are combined. Then, fine-image registration is performed through iterative registration based on pyramid images. To evaluate the performance and accuracy of the proposed method, we used KOMPSAT-3·3A, Sentinel-2A, and PlanetScope satellite images acquired over Daejeon city, South Korea. As a result, the average RMSE of the accuracy of the proposed method was derived as 1.2 and 3.59 pixels in Sentinel-2A and PlanetScope images, respectively. Consequently, it is considered that fine-image registration between multi-sensor satellite images can be effectively performed using the proposed method.

The Advanced Bias Correction Method based on Quantile Mapping for Long-Range Ensemble Climate Prediction for Improved Applicability in the Agriculture Field (농업적 활용성 제고를 위한 분위사상법 기반의 앙상블 장기기후예측자료 보정방법 개선연구)

  • Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Ahn, Joong-Bae;Hur, Jina;Kim, Yong Seok;Choi, Won Jun;Kang, Mingu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • The optimization of long-range ensemble climate prediction for rice phenology model with advanced bias correction method is conducted. The daily long-range forecast(6-month) of mean/ minimum/maximum temperature and observation of January to October during 1991-2021 is collected for rice phenology prediction. In this study, the concept of "buffer period" is newly introduced to reduce the problem after bias correction by quantile mapping with constructing the transfer function by month, which evokes the discontinuity at the borders of each month. The four experiments with different lengths of buffer periods(5, 10, 15, 20 days) are implemented, and the best combinations of buffer periods are selected per month and variable. As a result, it is found that root mean square error(RMSE) of temperatures decreases in the range of 4.51 to 15.37%. Furthermore, this improvement of climatic variables quality is linked to the performance of the rice phenology model, thereby reducing RMSE in every rice phenology step at more than 75~100% of Automated Synoptic Observing System stations. Our results indicate the possibility and added values of interdisciplinary study between atmospheric and agriculture sciences.

Quantitative precipitation estimation of X-band radar using empirical relationship (경험적 관계식을 이용한 X밴드 레이더의 정량적 강우 추정)

  • Song, Jae In;Lim, Sanghun;Cho, Yo Han;Jeong, Hyeon Gyo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.679-686
    • /
    • 2022
  • As the occurrences of flash floods have increased due to climate change, faster and more accurate precipitation observation using X-band radar has become important. Therefore, the Ministry of Environment installed two dual-pol X-band radars at Samcheok and Uljin. The radar data used in this study were obtained from two different elevation angles and composed to reduce the shielding effect. To obtain quantitative rainfall, quality control (QC), KDP retrieval, and Hybrid Surface Rainfall (HSR) methods were sequentially applied. To improve the accuracy of the quantitative precipitation estimation (QPE) of the X-band radar, we retrieved parameters for the relationship between rainfall rate and specific differential phase, which is commonly called the R-KDP relationship; hence, an empirical approach was developed using multiple rain gauges for those two radars. The newly suggested relationship, R = 27.4K0.81DP, slightly increased the correlation coefficient by 1% more than the relationship suggested by the previous study. The root mean square error significantly decreased from 3.88 mm/hr to 3.68 mm/hr, and the bias of the estimated precipitation also decreased from -1.72 mm/hr to -0.92 mm/hr for overall cases, showing the improvement of the new method.

Comparative Review of the Correlation Between Electroneurography, Electromyography, Hematology Tests, or the Heart Rate Variability Test, with an Improvement in the Severity of Bell's Palsy Symptoms

  • Hwang, Ji-Min;Kim, Jun-Yeon;Kim, Ha-Na;Park, Kyeong-Ju;Jo, Min-Gi;Jang, Jun-Yeong;Nam, Sang-Soo;Goo, Bon Hyuk;Kim, Jung-Hyun;Ko, Min Jung;Chae, Sang Yeup;Park, Young Jae
    • Journal of Acupuncture Research
    • /
    • v.38 no.3
    • /
    • pp.192-199
    • /
    • 2021
  • Background: In this retrospective study, we aimed to determine which diagnostic tests were associated with an improvement in Bell's palsy symptoms. Methods: There were 30 patients who visited Kyung Hee University Korean Medicine Hospital from April 1, 2017 to February 29, 2020, and who received East-West collaboration treatment for Bell's palsy. The tests included electroneurography (ENoG), electromyography (EMG), hematology, and heart rate variability (HRV) results which were used to determine if any test correlated with improvement of Bell's palsy symptoms. Results: The initial severity of symptoms did not correlate with the tests performed, with the exception of mean corpuscular hemoglobin concentration (p = 0.013). For both ENoG for oculi degeneration and mean EMG tests, the rate of nerve degeneration showed a significant negative correlation with the improvement of Bell's palsy symptoms. Amongst the HRV test indicators, the square root of the mean of the sum of the squares of differences between the adjacent normal R-R wave interval, the standard deviation of intervals, total power, very low frequency, and high frequency of the wave was negatively correlated with improvement of Bell's palsy symptoms. Similarly, glycosylated hemoglobin Type A1c (HbA1c) and erythrocyte sedimentation rate (ESR) showed a negative correlation with improvement of symptoms of Bell's palsy. With the exception of HbA1c and ESR, the remaining hematology test results showed no significant difference when comparing before and after treatment. Conclusion: ENoG, EMG, HRV test, HbA1c, and ESR negatively correlated with improvements in Bell's palsy symptoms and may determine the prognosis of Bell's palsy.

Estimation of the allowable range of prediction errors to determine the adequacy of groundwater level simulation results by an artificial intelligence model (인공지능 모델에 의한 지하수위 모의결과의 적절성 판단을 위한 허용가능한 예측오차 범위의 추정)

  • Shin, Mun-Ju;Moon, Soo-Hyoung;Moon, Duk-Chul;Ryu, Ho-Yoon;Kang, Kyung Goo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.485-493
    • /
    • 2021
  • Groundwater is an important water resource that can be used along with surface water. In particular, in the case of island regions, research on groundwater level variability is essential for stable groundwater use because the ratio of groundwater use is relatively high. Researches using artificial intelligence models (AIs) for the prediction and analysis of groundwater level variability are continuously increasing. However, there are insufficient studies presenting evaluation criteria to judge the appropriateness of groundwater level prediction. This study comprehensively analyzed the research results that predicted the groundwater level using AIs for various regions around the world over the past 20 years to present the range of allowable groundwater level prediction errors. As a result, the groundwater level prediction error increased as the observed groundwater level variability increased. Therefore, the criteria for evaluating the adequacy of the groundwater level prediction by an AI is presented as follows: less than or equal to the root mean square error or maximum error calculated using the linear regression equations presented in this study, or NSE ≥ 0.849 or R2 ≥ 0.880. This allowable prediction error range can be used as a reference for determining the appropriateness of the groundwater level prediction using an AI.

Evaluation of Measurement Accuracy for Unmanned Aerial Vehicle-based Land Surface Temperature Depending on Climate and Crop Conditions (기상 조건과 작물 생육상태에 따른 무인기 기반 지표면온도의 관측 정확도 평가)

  • Ryu, Jae-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.211-220
    • /
    • 2021
  • Land Surface Temperature (LST) is one of the useful parameters to diagnose the growth and development of crop and to detect crop stress. Unmanned Aerial Vehicle (UAV)-based LST (LSTUAV) can be estimated in the regional spatial scale due to miniaturization of thermal infrared camera and development of UAV. Given that meteorological variable, type of instrument, and surface condition can affect the LSTUAV, the evaluation for accuracy of LSTUAV is required. The purpose of this study is to evaluate the accuracy of LSTUAV using LST measured at ground (LSTGround) under various meteorological conditions and growth phases of garlic crop. To evaluate the accuracy of LSTUAV, Relative humidity (RH), absolute humidity (AH), gust, and vegetation index were considered. Root mean square error (RMSE) after minimizing the bias between LSTUAV and LSTGround was 2.565℃ under above 60% of RH, and it was higher than that of 1.82℃ under the below 60% of RH. Therefore, LSTUAV measurement should be conducted under the below 60% of RH. The error depending on the gust and surface conditions was not statistically significant (p-value < 0.05). LSTUAV had reliable accuracy under the wind speed conditions that allow flight and reflected the crop condition. These results help to comprehend the accuracy of LSTUAV and to utilize it in the agriculture field.

Estimation and Evaluation of Reanalysis Air Temperature based on Mountain Meteorological Observation (산악기상정보 융합 기반 재분석 기온 데이터의 추정 및 검증)

  • Sunghyun, Min;Sukhee, Yoon;Myongsoo, Won;Junghwa, Chun;Keunchang, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.244-255
    • /
    • 2022
  • This study estimated and evaluated the high resolution (1km) gridded mountain meteorology data of daily mean, maximum and minimum temperature based on ASOS (Automated Surface Observing System), AWS (Automatic Weather Stations) and AMOS (Automatic Mountain Meteorology Observation System) in South Korea. The ASOS, AWS, and AMOS meteorology data which were located above 200m was classified as mountainous area. And the ASOS, AWS, and AMOS meteorology data which were located under 200m was classified as non-mountainous area. The bias-correction method was used for correct air temperature over complex mountainous area and the performance of enhanced daily coefficients based on the AMOS and mountainous area observing meteorology data was evaluated using the observed daily mean, maximum and minimum temperature. As a result, the evaluation results show that RMSE (Root Mean Square Error) of air temperature using the enhanced coefficients based on the mountainous area observed meteorology data is smaller as 30% (mean), 50% (minimum), and 37% (maximum) than that of using non-mountainous area observed meteorology data. It indicates that the enhanced weather coefficients based on the AMOS and mountain ASOS can estimate mean, maximum, and minimum temperature data reasonably and the temperature results can provide useful input data on several climatological and forest disaster prediction studies.

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.

Analysis of Plant Height, Crop Cover, and Biomass of Forage Maize Grown on Reclaimed Land Using Unmanned Aerial Vehicle Technology

  • Dongho, Lee;Seunghwan, Go;Jonghwa, Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • Unmanned aerial vehicle (UAV) and sensor technologies are rapidly developing and being usefully utilized for spatial information-based agricultural management and smart agriculture. Until now, there have been many difficulties in obtaining production information in a timely manner for large-scale agriculture on reclaimed land. However, smart agriculture that utilizes sensors, information technology, and UAV technology and can efficiently manage a large amount of farmland with a small number of people is expected to become more common in the near future. In this study, we evaluated the productivity of forage maize grown on reclaimed land using UAV and sensor-based technologies. This study compared the plant height, vegetation cover ratio, fresh biomass, and dry biomass of maize grown on general farmland and reclaimed land in South Korea. A biomass model was constructed based on plant height, cover ratio, and volume-based biomass using UAV-based images and Farm-Map, and related estimates were obtained. The fresh biomass was estimated with a very precise model (R2 =0.97, root mean square error [RMSE]=3.18 t/ha, normalized RMSE [nRMSE]=8.08%). The estimated dry biomass had a coefficient of determination of 0.86, an RMSE of 1.51 t/ha, and an nRMSE of 12.61%. The average plant height distribution for each field lot was about 0.91 m for reclaimed land and about 1.89 m for general farmland, which was analyzed to be a difference of about 48%. The average proportion of the maize fraction in each field lot was approximately 65% in reclaimed land and 94% in general farmland, showing a difference of about 29%. The average fresh biomass of each reclaimed land field lot was 10 t/ha, which was about 36% lower than that of general farmland (28.1 t/ha). The average dry biomass in each field lot was about 4.22 t/ha in reclaimed land and about 8 t/ha in general farmland, with the reclaimed land having approximately 53% of the dry biomass of the general farmland. Based on these results, UAV and sensor-based images confirmed that it is possible to accurately analyze agricultural information and crop growth conditions in a large area. It is expected that the technology and methods used in this study will be useful for implementing field-smart agriculture in large reclaimed areas.

A CFD Study on Aerodynamic Performances by Geometrical Configuration of Guide Vanes in a Denitrification Facility (탈질 설비 내 안내 깃의 기하학적 형상에 따른 공력 성능에 대한 전산 해석적 연구)

  • Chang-Sik, Lee;Min-Kyu, Kim;Byung-Hee, Ahn;Hee-Taeg, Chung
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 2022
  • The flow pattern at the inlet of the catalyst layer in a selective catalytic reduction (SCR) system is one of the key parameters influencing the performance of the denitrification process. In the curved diffusing parts between the ammonia injection grids and the catalyst layers, guide vanes are installed to improve flow uniformity. In the present study, a numerical simulation has been performed to investigate the effect of the geometrical configuration of the guide vanes on the aerodynamic characteristics of a denitrification facility. This application has been made to the existing SCR process in a large-scaled coal-fired power plant. The flow domain to be solved covers the whole region of the flow passages from the exit of the ammonia injection gun to the exit of the catalyst layers. ANSYS-Fluent was used to calculate the three-dimensional steady viscous flow fields with the proper turbulence model fitted to the flow characteristics. The root mean square of velocity and the pressure drop inside the flow passages were chosen as the key performance parameters. Four types of guides vanes were proposed to improve the flow quality compared to the current configuration. The numerical results showed that the type 4 configuration was the most effective at improving the aerodynamic performance in terms of flow uniformity and pressure loss.