• Title/Summary/Keyword: Square Root

Search Result 2,665, Processing Time 0.039 seconds

Comparative analysis of detonation velocity in determining product composition for high energetic molecules using stoichiometric rules (화학 양론적 규칙으로 고에너지 물질의 폭발 생성물 조성 결정에 따른 폭발속도 비교분석)

  • Kim, Hyun Jeong;Lee, Byung Hun;Cho, Soo Gyeong;Lee, Sung Kwang
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.405-410
    • /
    • 2017
  • High energetic materials (HEMs) have been used in fuels, civil engineering and architecture as well as military purposes such as explosives and propellants. The essential process for the development of new energetic compounds is to accurately calculate its detonation performances. The most typical equation for calculating the explosive performance is the Kamlet-Jacobs (K-J) equation. In the K-J equation, the parameter such as the number of moles of gaseous products at the explosion, the average molar mass of gas products, and the explosion heat greatly affect the explosion performance. These depend on the product composition for the detonation reaction. In this study, detonation products of 65 high energetic molecules (HEMs) were calculated from the various rules such as Kamlet-Jacobs, Kistiakowsky-Wilson, modified Kistiakowsky-Wilson, Springall-Roberts rules to calculate more accurate detonation velocity (Dv). In addition, they were applied to five kinds of detonation velocity equations proposed by K-J, Rothstein, Xiong, Stine and Keshavarz. The mean absolute error and root mean square error of HEMs were obtained from experimental and calculated velocity value for each method. The K-J and Xiong equation that is slightly complex showed a lower mean absolute error than the simple Rothstein and Keshavarz equation. When the mod-KW rule was applied to the Xiong equation, the detonation velocities were the most accurate. This study compared the various method of calculating the detonation velocity of HEMs to obtain accurate HEMs performance.

Improvement of KOMPSAT-5 Sea Surface Wind with Correction Equation Retrieval and Application of Backscattering Coefficient (KOMPSAT-5 후방산란계수의 보정식 산출 및 적용을 통한 해상풍 산출 결과 개선)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1373-1389
    • /
    • 2019
  • KOMPSAT-5 is the first satellite in Korea equipped with X-band Synthetic Aperture Radar (SAR) instrument and has been operated since August 2013. KOMPSAT-5 is used to monitor the global environment according to its observation purpose and the availability of KOMPSAT-5 is also highlighted as the need of high resolution wind data for investigating the coastal region. However, the previous study for the validation of wind derived from KOMPSAT-5 showed that the accuracy is lower than that of other SAR satellites. Therefore, in this study, we developed the correction equation of normalized radar cross section (NRCS or backscattering coefficient) for improvement of wind from the KOMPSAT-5 and validated the effect of the equation using the in-situ measurement of ocean buoys. Theoretical estimated NRCS and observed NRCS from KOMPSAT-5 showed linear relationship with incidence angle. Before applying the correction equation, the accuracy of the estimated wind speed showed the relatively high root-mean-square errors (RMSE) of 2.89 m s-1 and bias of -0.55 m s-1. Such high errors were significantly reduced to the RMSE of 1.60 m s-1 and bias of -0.38 m s-1 after applying the correction equation. The improvement effect of the correction equation showed dependency relying on the range of incidence angle.

Prediction of Sea Surface Temperature and Detection of Ocean Heat Wave in the South Sea of Korea Using Time-series Deep-learning Approaches (시계열 기계학습을 이용한 한반도 남해 해수면 온도 예측 및 고수온 탐지)

  • Jung, Sihun;Kim, Young Jun;Park, Sumin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1077-1093
    • /
    • 2020
  • Sea Surface Temperature (SST) is an important environmental indicator that affects climate coupling systems around the world. In particular, coastal regions suffer from abnormal SST resulting in huge socio-economic damage. This study used Long Short Term Memory (LSTM) and Convolutional Long Short Term Memory (ConvLSTM) to predict SST up to 7 days in the south sea region in South Korea. The results showed that the ConvLSTM model outperformed the LSTM model, resulting in a root mean square error (RMSE) of 0.33℃ and a mean difference of -0.0098℃. Seasonal comparison also showed the superiority of ConvLSTM to LSTM for all seasons. However, in summer, the prediction accuracy for both models with all lead times dramatically decreased, resulting in RMSEs of 0.48℃ and 0.27℃ for LSTM and ConvLSTM, respectively. This study also examined the prediction of abnormally high SST based on three ocean heatwave categories (i.e., warning, caution, and attention) with the lead time from one to seven days for an ocean heatwave case in summer 2017. ConvLSTM was able to successfully predict ocean heatwave five days in advance.

Development of Bus Arrival Time Estimation Model by Unit of Route Group (노선그룹단위별 버스도착시간 추정모형 연구)

  • No, Chang-Gyun;Kim, Won-Gil;Son, Bong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.135-142
    • /
    • 2010
  • The convenient techniques for predicting the bus arrival time have used the data obtained from the buses belong to the same company only. Consequently, the conventional techniques have often failed to predict the bus arrival time at the downstream bus stops due to the lack of the data during congestion time period. The primary objective of this study is to overcome the weakness of the conventional techniques. The estimation model developed based on the data obtained from Bus Information System(BIS) and Bus management System(BMS). The proposed model predicts the bus arrival time at bus stops by using the data of all buses travelling same roadway section during the same time period. In the tests, the proposed model had a good accuracy of predicting the bus arrival time at the bus stops in terms of statistical measurements (e.g., root mean square error). Overall, the empirical results were very encouraging: the model maintains a prediction job during the morning and evening peak periods and delivers excellent results for the severely congested roadways that are of the most practical interest.

Computation of Tides in the Northeast Asian Sea by Blending the Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계 자료를 이용한 북동 아시아 해역의 조석 산정)

  • Kim, Chang-Shik;Matsumoto, Koji;Ooe, Masatsugu;Lee, Jong-Chan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • Tidal computations of $M_2,\;S_2,\; K_1$ and $O_1$ constituents in the northeast Asian sea are presented by blending the Topex/Poseidon (T/P) altimeter data into a hydrodynamic model with $5'{\times}5'$ resolution. A series of sensitivity experiments on a weighting factor, which is the control parameter in the blending method, are carried out using $M_2$ constituent. The weighting factor is set to be in inverse proportion to the square root of water depth to reduce noises which could occur in data-assimilative model by blending T/P data. Model results obtained by blending the T/P-derived $M_2,\;S_2,\; K_1$ and $O_1$ constituents simultaneously are compared with all T/P-track tidal data; Average values of amplitude and phase errors are close to zero. Standard deviations of amplitude and phase errors are approximately 2 cm and less than 10 degrees respectively. The data-assimilative model results show a quite good agreement with T/P-derived tidal data, particularly in shallow water region (h<250m). In deep water regions, T/P-derived tidal data show unreasonable spatial variations in amplitude and phase. The data-assimilative model results differ from T/P-derived data, but are improved to show reasonable spatial variations in amplitude and phase. In addition, the T/P-blended model results are in good agreement with coastal tide gauge data which are not blended into the model.

  • PDF

Remote Plasma Enhanced-Ultrahigh Vacuum Chemical Vappor Deposition (RPE-UHVCD)법을 이용한 GaN의 저온 성장에 관한 연구

  • 김정국;김동준;박성주
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.108-108
    • /
    • 1998
  • 최근의 GaN에 관한 연구는 주로 MOCVD법과 MBE법이 이용되고 있으며 대부분 800¬1$\alpha$)()t 정도의 고옹에서 이루어지고 었다. 그러나 이러한 고온 성장은 GaN 성장 과청에서 질 소 vacancy를 생성시켜 광특성을 저하시키고 청색 발광충인 InGaN 화합물에 In의 유입울 어 렵게 하며 저온에서보다 탄소 오염이 증가하는 동의 문제캠을 가지고 있다. 이러한 고온 생장 의 문제점을 해결하기 위한 방법중의 한 가지로 제시되고 있는 것이 저온 성장법이다. 본 연구 에 사용된 RPE-UHVCVD법은 Nz률 rf plasma로 $\sigma$acking하여 공급함으로써 NI-h롤 질소원으 로 사용하는 고온 성장의 청우와는 다르게 온도에 크게 의존하지 고 질소원올 공급할 수 있 어 저옹 성장이 가능하였다. 기판으로는 a - Alz03($\alpha$)()1)를 사용하였고 3족원은 TEGa(triethylgallium)이며,5족원으로는 6 6-nine Nz gas를 rf plasma로 cracking하여 활성 질소원올 공급하였다 .. Nz plasma로 질화처리 를 한 sapphire 표면 위에 G따애 핵생성충을 성장 옹도(350 t, 375 t, 400 t)와 성장시간(30 분,50 분) 그리고 VIllI비(1$\alpha$)(), 2뼈)둥을 변화시키면서 성장시킨 후 GaN 에피택시충을 450 $^{\circ}C$에서 120 분 동안 성장시켰다 .. XPS(x-ray photoelectron spectroscopy), XRD(x-ray d diffraction), AFM(atomic force microscope)둥올 이용하여 표면의 조성 및 morphology 변화와 결정성을 관찰하였다. X XPS 분석 결과 질화처리를 한 sapphire 표면에는 AlN가 형성되었다는 것을 확인 할 수 있 었으며 질화처리를 한 후 G따J 핵생성충올 성장시킨 경우에 morphology 변화를 AFM으로 살 펴본 결과 표면에 facet shape의 island가 형성되었고 이러한 결파는 질화처리 과청이 facet s shape의 island 형성을 촉진시킨다는 것을 알 수 있었다. 핵생성충의 성장온도가 중가함에 따 라 island의 모양은 round shape에서 facet shape으로 변화하였다. 이러한 표면의 morphology 변화와 GaN 에피택시충의 결정성과의 관계를 살펴보면 GaN 에피택시충 표면의 rms(root m mean square) roughness가 중가하는 경 우 XRD (j -rocking curve의 FWHM(full width half m maximum) 값이 감소하는 것으로 나타났다. 이러한 현상은 결정성의 향상이 columnar 성장과 관계가 었다는 것올 알 수 있었다 .. columnar 성장은 결함의 밀도가 낮은 column의 형생과 G GaN 에피택시충의 웅력 제거로 인해 G값{의 결정성을 향상시킬 수 있는 것으로 생각된다. 톡 히 고온 성장의 경우와는 달리 rms roughness의 중가가 100-150 A청도로 명탄한 표면올 유 지하면서 결정성을 향상시킬 수 있었다. 본 실험에서는 핵생성충올 375 t에서 30 분 생장시킨 경우에 hexagonal 모양의 island로 columnar 성장을 하였고 GaN 에피태시충의 결정성도 가장 향상되었다 이상의 결과로부터 RPE-UHVCVD법용 이용한 GaN 저온 성장에서도 GaN의 결청성올 향 상시킬 수 있음융 확인할 수 있었다.

  • PDF

Development and Validation of Predictive Models of Esherichia coli O157:H7 Growth in Paprika (파프리카에서 병원성 대장균의 성장예측 모델 개발 및 검증)

  • Yun, Hyejeong;Kim, Juhui;Park, Kyeonghun;Ryu, Kyoung-Yul;Kim, Byung Seok
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.2
    • /
    • pp.168-173
    • /
    • 2013
  • This study was carried out to develop and validate predictive models of E. coli O157:H7 growth. Growth data of E. coli O157:H7 in Paprika were collected at 12, 24, 30 and $36^{\circ}C$. The population increased into 3.0 to 3.8 log10 CFU/g within 4 days, then continued to increase at a slower rate through 10 days of storage at $12^{\circ}C$. The lag time (LT) and maximum specific growth rate (SGR) obtained from each primary model was then modeled as a function of temperature using Davey and square root equations, respectively. For interpolation of performance evaluation, growth data for a mixture of E. coli O157:H7 were collected at time intervals in paprika incubated at the different temperatures, which was not used in model development. Results of model performance for interpolation data demonstrated that induced secondary models showed acceptable goodness of fit. Relative errors in the LT and SGR model for interpolation data (18 and $27^{\circ}C$) was 100%, which show acceptable goodness of fit and validated for interpolation. The primary and secondary models developed in this study can be used to establish tertiary models to quantify the effects of temperature on the growth of E. coli O157:H7 in paprika.

Study on the Improvement of Land Clearing Methods by Bulldozer & Fertilization of Cleared Soil (불도우저에 의한 개간 공법의 개선과 숙지화에 관한 연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3627-3641
    • /
    • 1975
  • The Government is trying to increase total food grain yield to meet national self sufficiency by means of increasing unit yield as well as extending crop land, and this year he set the target of 321,000 hectare of forest to clear for cropping. This study was carried to investigate the most efficient method of clearing hillock by bulldozer, and successful method to develope yielding potential of newly cleared land in short term. Since the conventional land clearing method is just earth leveling and root removing neglecting top soil treatment, the growth of crop was poor and farmer tends not to care the land. The top-soil-furrowing method is applied through out this study, that is advantageous especially for the land having shallow top soil and low fertility like Korean forest. In this study, various operating method were tried to find out most efficient method separately in connection with the land slope less than 25 percent and over, and several fertilizing methods to develop yielding potential. The results are as follows; 1) For the natural land slope utilization method, applicable to the land having less than 25 percent slope, reverse operating was more efficient than using forward gear of bulldozer. The operating time was 3 hour 32 minutes and 36 seconds using forward gear was 2 hour 32 minutes and 30 seconds for reverse gear operation per 1,000 square meter. 2) Bulldozer having angle blade adjustment needed 7hr 15min. for constructing of terrace per 10a compaire with the one having angle & tilt adjustment needed 6hr 4min for same operations. Specially there is significant difference for operation time of first period (earth cutting) such as bulldozer having angle blade adjustment needed 3hr 56min compaired with the one having angle & tilt adjustment 3hr 59min. In construction of terrace, the bull-dozer having tilting and angle blade adjustment was most suitable and performed efficiently. 3) For the fertilizer application treatment, the grass (Ladino clover) yield in first year was almost same as ordinary field's in the plot applied(N.P.K+lime+manure) while none fertilizer plot showed one tenth of it, and (N.P.K.+lime) applied plot yielded on third. 4) The effect of different land clearing method to yield showed significant difference between each treatment especially in the first year, and the conventional method was the lowest. In the second year, still conventional terracing plot yielded only half of ordinary field while the other plots showed as same as ordinary field's. 5) The downward top soil treatment plot showed most rapid improvement in soil structure during one year physio chemically, it showed increase in pH rate and organic composition, and the soil changed gradually from loam to sand-loam and the moisture content increased against the pF rate, and it gives good condition to grow hay due to the increase of field water capacity with higher available water content. 6) Since the soil of tested area was granite, the rate of soil errosion was increased about 2 to 5 percent influencing in soil structure more sand reducing clay content, and an optimum contour farming method should be prepared as a counter measure of errosion.

  • PDF

Comparison of Crop Growth and Evapotranspiration Simulations between Noah Multi Physics Model and CERES-Rice Model (Noah Multi Physics 모델과 CERES-Rice 모델의 작물 생육 및 증발산 모의 비교)

  • Kim, Kwangsoo;kang, Minseok;Jeong, Haneul;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.282-290
    • /
    • 2013
  • Biophysical and biochemical processes through which crops interact with the atmosphere have been simulated using land surface models and crop growth models. The Noah Multi Physics (MP) model and the CERES-Rice model, which are a land surface model, and a crop growth model, respectively, were used to simulate and compare rice growth and evapotranspiration (ET) in the areas near Haenam flux tower in Korea. Simulations using these models were performed from 2003 to 2012 during which flux measurements were obtained at the Haenam site. The Noah MP model failed to simulate the pattern of temporal change in leaf area index (LAI) after heading. The simulated aboveground biomass with the Noah MP model was underestimated by about 10% of the actual biomass. The ET simulated with the Noah MP model was as low as 21% of those with the CERES-Rice model. In comparison with actual ET measured at Haenam flux site, the root mean square error (RMSE) of the Noah MP model was 1.8 times larger than that of the CERES-Rice model. The Noah MP model seems to show less reliable simulation of crop growth and ET due to simplified phenology processes and assimilates partitioning compared with the CERES-Rice model. When ET was adjusted by the ratio between leaf biomass simulated using CERES-Rice model and Noah MP model, however, the RMSE of ET was reduced by 30%. This suggests that an improvement of the Noah MP model in representing rice growth in paddy fields would allow more reliable simulation of matter and energy fluxes.

Property of Nickel Silicides on ICP-CVD Amorphous Silicon with Silicidation Temperature (ICP-CVD 비정질 실리콘에 형성된 처리온도에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Jong-Ryul;Choi, Young-Youn;Park, Jong-Sung;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.303-310
    • /
    • 2008
  • We fabricated hydrogenated amorphous silicon(a-Si:H) 140 nm thick film on a $180\;nm-SiO_2/Si$ substrate with an inductively-coupled plasma chemical vapor deposition(ICP-CVD) equipment at $250^{\circ}C$. Moreover, 30 nm-Ni film was deposited with a thermal-evaporator sequently. Then the film stack was annealed to induce silicides by a rapid thermal annealer(RTA) at $200{\sim}500^{\circ}C$ in every $50^{\circ}C$ for 30 minuets. We employed a four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscope(FE-SEM), transmission electron microscope(TEM), and scanning probe microscope(SPM) in order to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure evolution, and surface roughness, respectively. We confirmed that nano-thick high resistive $Ni_3Si$, mid-resistive $Ni_2Si$, and low resistive NiSi phases were stable at the temperature of <300, $350{\sim}450^{\circ}C$, and >$450^{\circ}C$, respectively. Through SPM analysis, we confirmed the surface roughness of nickel silicide was below 12 nm, which implied that it was superior over employing the glass and polymer substrates.