• Title/Summary/Keyword: Square Rib

Search Result 72, Processing Time 0.03 seconds

Experimental and Numerical Investigation on Heat Transfer and Fluid Flow Characteristics in the Ribbed Square Channel (거친 사각채널에서 열전달과 유체유동 특성에 관한 실험 및 수치해석)

  • Kang, Ho-Keun;Baer, Sung-Taek;Lee, Dae-Hee;Ahn, Soo-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.275-283
    • /
    • 2006
  • Experiment and three dimensional numerical investigations of incompressible turbulent flow through square channels with one- and two-sided ribbed walls are performed to determine pressure drop and heat transfer. The CFX(version 5.7) software package is used for the computation. The ribbed walls have a $45^{\circ}$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The numerical results coincide with experimental data that obtained for $7,600{\le}Re{\le}24.900$, the pitch-to-rib height ratio (p/e) of 8.0. and the rib height-to-channel hydraulic diameter ratio ($e/D_h$) of 0.0667. The results show that values of local heat transfer coefficient and friction factor in the channel with two-sided ribbed wall are higher than those in the channel with one-sided ribbed walls.

Optimization of Angled Ribs for Heat Transfer Enhancement in a Square Channel with Bleed Flow (유출유동을 가진 정사각유로 내 열전달 향상을 위한 경사진 요철 최적설계)

  • Lee, Hyun;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.300-306
    • /
    • 2008
  • In the present study, the second order response surface method (RSM) is carried out to get optimum thermal design for enhancing heat transfer in a square channel with bleed flow. The RSM is used as an optimization technique. To calculate the heat transfer, RNG k-epsilon model and enhanced wall function are used. To design optimum rib turbulators, two design variables such as attack angle of rib $({\alpha})$ and rib pitch-to-rib height ratio (p/e) are optimized. In these analyses, the channel inlet Reynolds number was fixed at 10,000 in both non-bleeding and bleeding cases. The response surfaces of two design variables are constructed in cases with and without bleed flow. As a result, the optimum (or highest) heat transfer values are almost the same in ranges of two cases with and without bleed flow. However, the friction losses in the case with bleed flow are lower than those without bleed flow.

Effects of Rib Cross Section Shapes on Heat Transfer of a Rib-Roughened Duct (터빈 기익 내부관 열전달 증대를 위해 설치된 요철의 형상 효과)

  • Wu, Seong Je;Kwon, Hyuk Jin;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.149-157
    • /
    • 1999
  • Heat transfer in a duct is augmented remarkably by rib turbulators. However, increasing friction loss is accompanied due to ribs disturbing flows. Hence, pressure drops and heat transfer are considered simultaneously to decide heat/mass transfer performance in a rib-roughened duct. In the present study, the effects of rib cross section shape on pressure drop through a duct are investigated as well as those on heat transfer characteristics. The results show that the characteristics of heat/mass transfer and friction loss in the duct roughened with triangular ribs are similar to those with square ribs, while significantly different from those with semicircular ribs. The best performance in the duct is obtained by using semicircular shaped ribs among three types of ribs for the large rib angles of ${\alpha}{\geq}63^{\circ}$.

Experimental Study of Heat/Mass Transfer in Rotating Cooling Passages with Discrete Ribs (단락 요철이 설치된 내부 냉각유로에서 회전에 따른 열/물질전달 특성 연구)

  • Kim Kyung Min;Kim Sang In;Lee Dong Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.590-598
    • /
    • 2005
  • The present study has been conducted to investigate the effect of discrete ribs and rotation on heat/mass transfer characteristics in a two-pass square duct with $90^{\circ}-rib$ turbulators. The rib turbulator has a square cross section of 1.5 mm. The rib height-to-hydraulic diameter ratio $({e/D_{h})$ is 0.056, and the rib pitch-to-rib height ratio (p/e) is 10. The gap width is the same as the rib height. The rotation number ranges from 0.0 to 0.2 while Reynolds number is fixed to 10,000. In a stationary duct, the heat/mass transfer on the surfaces with discrete ribs is enhanced because the gap flow promotes local turbulence and flow mixing near the ribbed surface. In a rotating duct, the gap flow affects differently the heat/mass transfer on leading and trailing surfaces with discrete ribs. On the leading surface of the first pass, heat/mass transfer is increased due to the gap flow. On the trailing surface of the first pass, however, heat/mass transfer is decreased because the gap flow disturbs reattachment of main flow. The phenomenon, that is, the difference of heat transfer between the leading and the trailing surfaces is distinctly presented by rotation.

Effects of Bleeding on Heat/Mass Transfer in a Rotating Channel with Transverse Ribs (90도 요철이 설치된 회전덕트에서 유출이 열/물질전달에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.1 s.34
    • /
    • pp.25-31
    • /
    • 2006
  • The present study investigates the effects of bleed flow on heat/mass transfer and pressure drop in a rotating channel with transverse rib turbulators. The hydraulic diameter $(D_h)$ of the square channel is 40.0mm. The bleed holes are located between the rib turbulators on leading surface and the hole diameter (d) is 4.5 mm. The square rib turbulators are installed on both leading and trailing surfaces. The rib-to-rib pitch is 10.0 times of the rib height(e) and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.055. The tests were conducted at various rotation numbers (0, 0.2, 0.4), while the Reynolds number and the rate of bleed flow to main flow (BR) were fixed at 10,000 and $10\%$, respectively. The results suggest that the heat/mass transfer characteristics in the internal cooling passage are influenced by rib turbulators, bleed flow and the Coriolis force induced by rotation. For the rotating ribbed passage with bleed flow, the heat/mass transfer on the leading surface is hardly affected by bleed flow, but that on the trailing surface decreases due to the diminution of main flow. The results also show that the friction factor decreases with the bleed flow.

Heat/Mass Transfer Augmentation in a Square Duct . Roughened with Angled Discrete Ribs Having Narrow Gaps (정사각 덕트 내에서 열/물질전달 촉진을 위한 경사진 단락 요철의 좁은 틈새 효과)

  • Wu, Seong-Je;Lee, Sei-Young;Choi, Chung;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.150-158
    • /
    • 2002
  • Local heat/mass transfer and friction loss in a square duct roughened with various types of continuous and discrete rib turbulators are investigated. The combined effects of the gap flows of the discrete ribs and the secondary flows are examined for the purpose of the reduction of thermally weak regions and the promotion of the uniformity of heat/mass transfer distributions as well as the ;augmentation of average heat/mass transfer. The rib-to-rib pitch to the rib height ratio (p/e) of 8 and the rib angles of 90° and 60° are selected with e/D$\_$h/=0.08. The vortical structure of the secondary flows induced by the parallel angled arrays are quite distinct from that induced by the cross angled arrays. This distinction influences on heat/mass transfer and friction loss in all the tested cases. The gap flows of the discrete ribs reduce the strength of the secondary flows but promote local turbulence and flow mixing. Consequently, the angled discrete ribs with the small gaps provide a more uniform heat/mass transfer distribution sustaining high average heat/mass transfer.

Effects of Duct Aspect Ratios on Heat/Mass Transfer With Discrete V-Shaped Ribs (쐐기형 단락요철이 설치된 덕트의 종횡비가 열/물질 전달에 미치는 영향)

  • Lee, Dong-Hyun;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1453-1460
    • /
    • 2003
  • The present study investigates the effects of rib arrangements and aspect ratios of a rectangular duct simulating the cooling passage of a gas turbine blade. Two different V-shaped rib configurations are tested with the aspect ratios (W/H) of 3 to 6.82. One is the continuous V-shaped rib configuration with $60^{\circ}$ attack angle, and the other is the discrete V-shaped rib configuration with $45^{\circ}$ attack angle. The square ribs with the pitch to height ratio of 10.0 are installed on the test section in a parallel arrangement for both rib configurations. Reynolds numbers based on the hydraulic diameter are changed from 10,000 to 30,000. A naphthalene sublimation method is used to measure local heat/mass transfer coefficients. For the continuous V-shaped rib configuration, two pairs of counter-rotating vortices are generated in a duct, and high transfer region is formed at the center of the ribbed walls of the duct. However, for the discrete V-shaped rib configuration with $45^{\circ}$ attack angle, complex secondary flow patterns are generated in the duct due to its geometric feature, and more uniform heat/mass transfer distributions are obtained for all tested cases

  • PDF

Optimization of Angled Ribs for Heat Transfer Enhancement in Square Channel with Bleed Flow (유출홀이 설치된 정사각유로 내 열전달 향상을 위한 경사진 요철 최적설계)

  • Lee, Hyun;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2384-2389
    • /
    • 2007
  • The 2nd order response surface method (RSM) has been carried out to get optimum thermal design for enhanced heat transfer on square channel with bleed holes. The RSM was used as an optimization technique with Reynolds-averaged navier-stokes equation. Turbulence model for heat transfer analysis used RNG k-epsilon model. The wall function used enhanced wall function. Numerical local heat transfer coefficients were similar to the experimental tendency. Two design variables such as attack angle of rib (${\alpha}$), rib pitch-to-rib height ratio (p/e) were chosen. Operation condition considered bleeding ratio per bleed hole ($BR_{hole}$). A response surface were constructed by the design variables and operation condition. As a result, adjusted $R^2$ was more than 0.9. Optimization results of various objective function were similar to heat transfer in channel with and without bleed flow. But friction factor was lower than channel without bleed flow.

  • PDF

Effects of Rib Angles on Heat Transfer in a Square Convergent Channel with Ribs on One Wall (한면에 리브가 설치된 4면 수축 사각채널에서 리브의 각도가 열전달에 미치는 영향)

  • Lee, Myung-Sung;Kim, Beom-Soo;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • The local heat transfer and pressure drops of developed turbulent flows in the convergent channels with square cross-sectional areas along the streamwise distance have been investigated experimentally. Four different parallel angled ribs (a = $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$) are placed to the one sided wall only, respectively. The ribbed walls are manufactured with a fixed rib height (e)=10 mm and the ratio of rib spacing (p) to height (e) = 10. The measurement was run within the range of Reynolds numbers from 22,000 to 79,000. The result shows that the increases in the Nusselt numbers for the flow attack angles can be seen in the order of $30^{\circ}$, $45^{\circ}$, $60^{\circ}$ and $90^{\circ}$.

An Investigation of Angled Discrete Rib-Turbulators for Cooling Enhancement of Gas Turbine Blades (가스 터빈 블레이드 냉각 성능 향상을 위한 경사요철의 단락 효과)

  • Wu, Seong-Je;Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.782-789
    • /
    • 2001
  • Local heat/mass transfer and friction loss in a square duct roughened with various types of continuous and discrete rib turbulators are investigated. The combined effects of the gap flows of the discrete ribs and the secondary flows are examined for the purpose of the reduction of thermally weak regions and the promotion of the uniformity of heat/mass transfer distributions as well as the augmentation of average heat/mass transfer. The rib-to-rib pitch to the rib height ratio (p/e) of 8 and the rib angles of 90 and 60 deg are selected with $e/D_{h}=0.08$. The vortical structure of the secondary flows induced by the parallel angled arrays are quite distinct from that induced by the cross angled arrays. This distinction influences on heat/mass transfer and friction loss in all the tested cases. The gap flows of the discrete ribs reduce the strength of the secondary flows but promote local turbulence and flow mixing. As a result, the fairly uniform heat/mass transfer distributions are obtained with two row gaps.

  • PDF