• Title/Summary/Keyword: Square Patch Antenna

Search Result 71, Processing Time 0.024 seconds

Miniaturization of Circularly Polarized Microstrip Antenna for RFID Portable Reader at 900 MHz Band (900 MHz대 RFID 휴대 리더용 원편파 안테나 소형화)

  • Kang, Min-Sik;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.411-417
    • /
    • 2008
  • This paper presents the miniaturization of circularly polarized microstrip patch antenna for UHF-band RFID portable reader. The proposed antenna has a group of four I-slots on a conventional corner-truncated square microstrip patch and it is shown that the antenna size is reduced compared to the antenna without I-slots. A 76 mm by 76 mm small antenna with four I-slots is fabricated with 6.4 mm thick FR4 substrate and its 10 dB return loss bandwidth, the gain and the axial ratio are measured to be $938{\sim}975\;MHz$, $-0.88{\sim}-2\;dBi$, and $3.27{\sim}13.21\;dB$ within the 10 dB return loss bandwidth, respectively.

Bandwidth Enhancement for the GPS Patch Antenna Using the Quadrature Hybrid Chip Circuit (90도 하이브리드 칩 회로를 이용한 GPS용 패치안테나의 광대역화)

  • Son, Taeho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.765-768
    • /
    • 2015
  • In this paper, two ports feeding a microstrip patch antenna using a quadrature hybrid circuit was proposed to enhance the bandwidth for the global positioning system(GPS). The square patch was designed, and the probe feeding was applied. The quadrature hybrid chip circuit for two-port feeding was designed, and output ports that have a 90-degree phase difference feed to the patch antenna. The designed patch and quadrature hybrid circuit were implemented on an FR4 board, and were combined. The measurement of the bandwidth within a voltage standing wave ratio(VSWR) of 2: 1 and axial ratio(AR) in 3dB were 29 %BW(1,230~1,700 MHz) and 15.87 %BW(1,400~1,650 MHz), respectively. The peak gain at the GPS center frequency was measured at 2.75 dBi in an anechoic chamber.

400MHz Band Small Meander Microstrip Antenna (400MHz대 소형 미앤더 마이크로스트립 안테나)

  • Seo Yong Gun;Yoon Chun Su;Park Dong Kook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.5-8
    • /
    • 2004
  • In this paper, a novel 400MHz band small meander microstrip antenna is proposed the shape of the proposed antenna is a waved meander microstrip with a pair rf short pins on th£ edge. the length of waved meander microstrip is $\lambda_g/4$ but it bends to half its size. Therefore, the total size of the proposed antenna is reduced to about 1/20 which is compared with a square patch antenna the simulated antenna gain is about 3dBi at 424MHz. the proposed antenna of -10dB impedance bandwidth is measured about $1.4\%$.

  • PDF

A Study on the design of the Microstrip Patch Array Antenna for Doppler Radar (도플러 레이더용 마이크로스트립 페치 배열 안테나의 설계에 관한 연구)

  • 강중순;손병문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.519-526
    • /
    • 2002
  • In this paper, a microstrip patch array antenna for a Doppler radar at 10.525GHz is desinged and fabricated. To be used for mobile radar system, the antenna is fabricated on a single layer laminate to resist a fire impact and is covered with the Teflon foam. To obtain the desired characteristics, the array antenna is designed 4$\times$8 array using a corporate 3-dB amplitude taper. Also, using square patch elements, the antenna can be converted to a circular polarized antenna later. The designed and fabricated array antenna has the reflection coefficient$({S_11})$ -53.498dB, the horizontal beam width of $10^{\circ}$, the vertical beam width of $18.8^{\circ}$, the gain of 21dBi, the bandwidth of 220MHz for VSWR<1.5 and a side lobe level of less than -17.5dB.

Optimum Design of a Dual-Band Microstrip Patch Antenna using the Square CSRR Construction (CSRR 구조 이중대역 마이크로스트립 패치안테나의 최적 설계)

  • Kim, Gue-Chol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • In this paper, dual band patch antenna was designed using a CSRR structure with negative values permeability which inserted into the ground plane. We propose an antenna that can be used in dual band f1(1.53GHz) and f2(1.63GHz) for satellite communications by using the CSRR placed on the backside of feeding line, which is a negative shape of SRR. The proposed antenna can be arrayed using microstrip line and can be made smaller than conventional patch antenna. The fabricated antenna has the input reflection coefficient of -12.5dB and -14.5dB at f1 and f2, and the gain of 2dB and -0.8dB, respectively. and it was confirmed that the performance was sufficient in the dual-band.

Design of a Dual-Frequency Microstrip Patch Antenna (이중 공진형 마이크로스트립 패치 안테나 설계)

  • 김규성;김태우;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1131-1137
    • /
    • 1999
  • In this paper, a novel design method of an apertured coupled microstrip patch antenna with the single feeding structure is proposed for dual resonance frequencies with mutually perpendicular polarizations. The characteristics of this antenna are experimentally investigated. In order to achieve this goal, a new type of square patch with double notches is used as a radiator and the crossed slot and the bended mictrostrip feeder are adopted for the dual polarizations in the aperture-coupled structure. For the application of the proposed antenna, a Ku-band Tx/Rx $2\times$ subarray antenna is designed and manufactured. Also, the applicability of the antenna as a ground terminal is examined through performance analysis. According to the measurement, the gain of the antenna is 10dBi at the center frequencies of Tx and Rx, the side lobe level is lower than -13dB, and the cross polarization lebel is below 17 dB.

  • PDF

Bandwidth Broadening for the GPS Microstrip Patch Antenna (GPS용 마이크로스트립 패치안테나의 광대역화)

  • Son, Taeho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.4
    • /
    • pp.73-79
    • /
    • 2015
  • Enhanced bandwidths of the GPS microstrip patch antennas applied by a Wilkinson power divider and a quadrature hybrid were compared. The square patch was designed, and fed by the two port probes for the circuit application. The Wilkinson power divider and quadrature hybrid circuit were designed, and applied to the patch antenna. The designed patch and two circuits were implemented on the FR4 board, and combined together. The measurement of the bandwidth within a voltage standing wave ratio (VSWR) of 2: 1 were 36.5% (1,200~1,775 MHz) in the case of the Wilkinson power divider and 29.84% (1,230~1,700 MHz) in the case of the quadrature hybrid. Axial ratios (AR) in 3dB were 17.14% bandwidth (1,360~1,630 MHz) and 15.87% bandwidth (1,400~1,650 MHz), respectively. The application of the Wilkinson power divider is wider than that of the quadrature hybrid. The peak gains in the anechoic chamber at the GPS center frequency were measured as 2.84 dBi and 2.75 dBi, respectively.

Radiation Characteristics of Microstrip Patch Antennas with a Finite Grounded Square Substrate (유한한 정사각형 기판을 가지는 마이크로스트립 패치 안테나의 방사 특성)

  • Kim, Tae-Young;Park, Jea-Woo;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.118-127
    • /
    • 2009
  • Effect of a finite square substrate plane on the radiation characteristics of a microstrip patch antenna is investigated. Excellent agreements between the simulation and measured results on the radiation characteristics of patch antennas for various square substrate thicknesses and sizes are obtained. The effect of a square substrate plane on the resonant frequency and bandwidth is small, while that on the radiation pattern is large. As the substrate thickness increases, the variations of the gain of the broadside radiation, the direction of the maximum radiation, and the radiation pattern increase for the variation of a substrate size. The maximum gain difference between the broadside radiation and back radiation and the large gain of broadside radiation are obtained when the length of a side of a square substrate plane is $0.8\;{\lambda}_0$.

Design of Microstrip Array Antenna with Three-Element Sequential-Rotation Subarray for DBS

  • Jin, Kyung-Soo;Shin, Hye-Jung;Park, Byong-Woo
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.28-33
    • /
    • 2002
  • The LHCP circularly polarized antenna operating at DBS band is developed by employing the sequential-rotation technique in which each subarray is comprised the three truncated-corner patch square element. Antenna designed with sequentially-related technique whose M=3, p=2 has the effect of improved axial-ratio bandwidth, cross-polarization etc. And it is proved that the degradation of radiation pattern can be reduced significantly by minimizing the radiation loss of feeding line structure. Antenna designed shows extremely low side lobe level of below - 25 dB in the diagonal plane and cross-polarization level of below -20 dB in the all plane. And these performances comply with the array antenna specification for DBS.

Design of Multi-Meander Microstrip Patch Antenna for Metallic Object in u-City (u-City용 금속 부착을 위한 다중 미앤더형 마이크로스트립 패치 안테나 설계)

  • Choi, Yong-Seok;Seong, Hyeon-Kyeong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.46-52
    • /
    • 2014
  • In this paper, we present a design of meander type microstrip patch antenna which has the best quality in RFID approved international standard of 910MHz broadband, usable in metal environment. In order to be fit into the commercial tag chip on the antenna, a square shaped feeder is installed on the main body as well as in the main body. In addition, a multi meander type patching element was designed in order to reduce the main body effectively. Three antennae, Cases 1, 2 and 3, were designed and compared in the areas of broad band width, effectiveness or recognition distance according to their sizes and number of folds. The measurement result of Case 3 was determined to be the best. It was confirmed that mostly the efficiency and characteristic gain change due to antenna size and number of folds in meander type influenced the antenna recognition distance.