• 제목/요약/키워드: Square Cup Deep Drawing

검색결과 56건 처리시간 0.021초

A Study of Ability of a Rectangular Shell Deep Drawing by Finite Element Program

  • Kumjing, Sanya;Somphasong, Papon
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.68-77
    • /
    • 2015
  • This study was the use of the finite element method in the deep drawing process of a rectangular shell cup. The aim was to analyse the equivalent strain in the workpiece and to find out what happened to the disc blank sheet before the forming by stamping. The rectangular shell cup was $24{\times}30{\times}20$ mm. and made of 2mm.thick SUS 403 and SUS 304 stainless steel. There were 3 types of blank sheets: 1) square sheet 2) 45 degree angled edge cutting sheet 3) circular sheet. It was found out that the drawing up with the use of 3 types of blank sheet made of SUS 304 stainless steel had no risk in the workpiece. For the stamping of the rectangular shell that used a square sheet made of SUS 403 stainless steel, it was found out that there was no risk in the work piece, but with the use of 45 degree angled edge cutting sheet or round sheet, the work piece had a risk to be damaged.

크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교 (Comparison of Warm Deep Drawability of Stainless Steel Sheet Between Crank Press and Hydraulic Press)

  • 김종호;최치수;나경환
    • 소성∙가공
    • /
    • 제4권4호
    • /
    • pp.345-352
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results from experiments performed at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film are made both in a crank and hydraulic press for two kinds of specimens. The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydraulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability, such as forming temperature, speed of press and cooling of punch are examined and discussed.

  • PDF

크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교 (Comparison of Warm Deep Drawability of Stainless Sheet Between Crank Press and Hydraulic Press)

  • 김종호;최치수;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.178-185
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film made both in a crank and hydrqulic press for two kinds of specimens . The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydrqulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability , such as forming temperature, speed of press and cooling of punch are examinnied and discussed.

  • PDF

정사각형 컵 디프드로잉의 탄소성 유한 요소해석 (An Elastic-Plastic FE Analysis of a Square Cup Deep Drawing Process)

  • 서의권;심현보
    • 소성∙가공
    • /
    • 제5권1호
    • /
    • pp.8-17
    • /
    • 1996
  • In the present study SEAM (Shear Energy Augmented Membrane) elements have been devel-oped. Maintaining the numerical efficiency of conventional membrane elements the effect of out-of-plane deformation (transverse shear deformation) has been incorporated for the purpose of computational stabilization without introducing additional degrees of freedom. Computations are carried out for the deep drawings of square cup to check the validity and the effectiveness of proposed SEAM elements. The computational results are compared with both the existing results. And the effects of process variables like initial sheet thickness punch & die round and clearance are checked

  • PDF

원형 클래드 판재를 이용한 정사각컵 온간 디프 드로잉성 비교 (Comparision of Warm Deep Drawability of Square Cups Using Circular Clad Sheet Metals)

  • 류호연;김영은;김종호;정완진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.89-93
    • /
    • 2001
  • This study was carried out to investigate the warm deep drawability of square cups of clad sheet metals, by changing temperatures of die and blankholder and blank materials. Two kinds of clad sheet metals, STS304-A1050-STS304 and STS304-A1050-STS430 were chosen for experiments. The relative drawing depth of STS304-A1050-STS304 clad sheet was increased up to 4.4 at $150^{\circ}C$ that was $29\%$ higher than at room temperature, whereas STS304-A1050-STS430 material was improved to 3.65 at $120^{\circ}C$ which was $16\%$ better than at room temperature. In addition, comparison of wall thickness and hardness of a warm drawn cup with those of room temperature showed more even distributions. Therefore, warm forming technique was confirmed to ive better results in deep drawing of stainless clad sheet metal.

  • PDF

마그네슘 합금 AZ31 판재의 온간 사각컵 딥드로잉 성형성의 유한요소 해석 (Finite-Element Analysis of Formability in Warm Square Cup Deep Drawing of Magnesium Alloy AZ31 Sheet)

  • 김흥규;이위로;홍석관;한병기;김종덕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.122-125
    • /
    • 2005
  • Magnesium alloys are expected to be widely used for the parts of structural and electronic applications due to their lightweight and EMI shielding characteristics. While the die casting has been mainly used to manufacture the parts from the magnesium alloys, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. However, the magnesium alloy has low formability at room temperature and therefore, in many cases, forming at elevated temperatures is necessary to obtain the required material flow without failure. In the present study, square cup deep drawing tests using the magnesium alloy AZ31 sheet were experimentally conducted at various elevated temperatures as well as room temperature, and the corresponding finite-element simulations, which calculated the damage evolution based on the Oyane's criterion, were conducted using the stress-strain relations from the tensile tests at various temperatures. The formability predictability by the finite-element analysis was investigated by comparing the predicted damage distributions over the deformed AZ31 sheet at elevated temperatures with the corresponding experimental deformations with failures.

  • PDF

박판의 덥 드로잉 성형을 위한 수치제어 쿠션 시스팀의 개발 (Development of Numerically Controlled Cushion System for Use in Deep Drawing of Sheet Metals)

  • 이정우;최치수
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.115-122
    • /
    • 2001
  • It is well known, for many years, that deep drawability can be improved by applying variable blank holding force. To apply variable blank holding force during cup drawing, we set up cushion pressure control system on the hydraulic press, and the pressure control system is often called NC(Numerically Controlled) cushion system. A cushion pressure control experiment was carried out using the NC cushion and it was shown that the proposed system produced good performance. The comparison of drawability of square cups with and without NC cushion showed that the drawability could be greatly improved when S-shaped pressure curve was applied. This paper includes design details of the NC cushion system and experimental analysis of drawability with NC cushion system.

  • PDF

Ti-6Al-4V판재의 온간 딥드로잉 성형성에 미치는 공정변수의 영향 (Effect of Processing Conditions on the Deep Drawability of Ti-6Al-4V Sheet at Warm Temperatures)

  • 신기승;박진기;김정한;김영석;박용호;박노광
    • 소성∙가공
    • /
    • 제24권1호
    • /
    • pp.5-12
    • /
    • 2015
  • In the current study, fundamental deep drawing characteristics of Ti-6Al-4V alloy sheets were investigated to establish the effect of processing conditions on large size square deep drawn cups. To accomplish this study, FE-simulations (Abaqus) were performed to determine optimum blank size, friction coefficient, the gap between punch and die, etc. The simulated processing parameters were verified experimentally. Based on the FE-simulation results, deep drawing was performed with various blank holding loads and sample sizes. In order to improve the formability of Ti-6Al-4V sheet, various lubricant methods were evaluated. Tensile tests and thickness measurements were conducted on the formed sheets. Processing parameters including blank holding force, lubricants, and optimum blank size, were selected to achieve improved drawing quality. With the optimum processing condition, a $200mm{\times}200mm$ cup was deep drawn successfully.

고체 윤활제를 사용한 마그네슘 합금 AZ31 판재 온간 디프 드로잉의 성형성 평가 (Evaluation of Warm Deep Drawability of Magnesium Alloy AZ31 Sheet Using Solid-Type Lubricants)

  • 김흥규;김종덕
    • 소성∙가공
    • /
    • 제15권6호
    • /
    • pp.453-458
    • /
    • 2006
  • While the die casting has been mainly used to manufacture the magnesium alloy parts, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. Because the magnesium alloy has low formability at room temperature, forming at elevated temperatures is a necessary condition to obtain the required material flow for press forming. However, the elevated temperature forming does not always guarantee the sufficient formability under the dry friction condition because the surface damage such as scratch or wear may accelerate the material failure. In the present study, the solid-type lubricants such as PTFE, graphite and $MoS_2$ were tested for the square cup warm deep drawing using the magnesium alloy AZ31 sheet. The formability improvement by using the lubricant was examined by comparing the maximum deep drawing depth using the PTFE against no lubricant. The formability difference for the different lubricant was also examined based on the maximum deep drawing depth.