• Title/Summary/Keyword: Square Cross Sectional

Search Result 292, Processing Time 0.025 seconds

Visualization of Underexpanded Jet Structure from Square Nozzle

  • Tsutsumi, Seiji;Yamaguchi, Kazuo;Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.408-413
    • /
    • 2004
  • Numerical and experimental investigation were car-ried out to clarify the flow structure of underexpanded jet from a square nozzle. The square nozzle rep-resents one of the clustered combustors of a linear aerospike engine. From the numerical results, the three-dimensional shock wave of the underexpanded square jet was found to be composed of two shocks. One is the intercepting shock which corresponds to the shock observed in two-dimensional planar jet. The other is the recompression shock divided into two types. The expansion fans coming from the nozzle edges interact with each other at the comers of the nozzle exit, and overexpanded regions are generated. Therefore one of the two recompression shocks is formed at the comers of the nozzle exit behind the overexpanded regions. As the jet goes downstream, the overexpanded regions grow larger to coalesce at the symmetry planes. Then, the other type of the recompression shock is generated. The three-dimensional shock structure formed by the intercepting shock and the recompression shocks dominates the expansion of the jet boundary. The shock detection algorithm us-ing CFD results was developed to reveal the relation between the shock waves and the jet boundary, and it was found that the cross-sectional jet shape becomes cross-shape. The key features observed in the numerical investigation were verified by the experimental results. The shock structure at the diagonal plane was in good agreement with the experimental schlieren images. Moreover, the cross-sections visualized by the Mie scattering method confirmed that the cross-section of the jet becomes cross-shape.

  • PDF

EFFECTS OF ROUNDING CORNERS ON THE FLOW PAST A SQUARE CYLINDER (정방형 실린더의 모서리 원형화에 따른 유동 불안정성의 변화)

  • Park, Doohyun;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • This study performed numerical analysis for the characteristics of flow-induced forces and the flow instability depending on the cross-sectional shape of the cylinder in laminar flow. To implement the cylinder cross-section, we adopted an Immersed Boundary Method with marker particles. We analyzed flow characteristics based on the radius of corner curvature. Main parameters are corner radius and Reynolds number (Re). With Re = 40, 50, 150 we calculated the flow field, drag coefficient, RMS of lift coefficient, pressure coefficient and Strouhal number in conjunction with the corner radius variation. Also, we calculated critical Reynolds number ($Re_c$) depending on the corner radius variation.

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Finite element modeling of RC columns made of inferior concrete mix strengthened with CFRP sheets

  • Khaled A. Alawi, Al-Sodani;Muhammad Kalimur ,Rahman;Mohammed A., Al-Osta;Omar S. Baghabra, Al-Amoudi
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.403-417
    • /
    • 2022
  • Reinforced concrete (RC) structures with low-strength RC columns are rampant in several countries, especially those constructed during the early 1960s and 1970s. The weakness of these structures due to overloading or some natural disasters such as earthquakes and building age effects are some of the main reasons to collapse, particularly with the scarcity of data on the impact of aspect ratio and corner radius on the confinement effectiveness. Hence, it is crucial to investigate if these columns (with different aspect ratios) can be made safe by strengthening them with carbon fiber-reinforced polymers (CFRP) sheets. Therefore, experimental and numerical studies of CFRP-strengthened low-strength reinforced concrete short rectangular, square, and circular columns were studied. In this investigation, a total of 6 columns divided into three sets were evaluated. The first set had two circular cross-sectional columns, the second set had two square cross-section columns, and the third set has two rectangular cross-section columns. Furthermore, FEM validation has been conducted for some of the experimental results obtained from the literature. The experimental results revealed that the confinement equations for RC columns as per both CSA and ACI codes could give incorrect results for low-strength concrete. The control specimen (unstrengthened ones) displayed that both ACI and CSA equations overestimate the ultimate strength of low-strength RC columns by order of extent. For strengthened columns with CFRP, the code equations of CSA and ACI code overestimate the maximum strength by around 6 to 13% and 23 to 29%, respectively, depending on the cross-section of the column (i.e., square, rectangular, or circular). Results of finite element models (FEMs) showed that increasing the layer number of new commonly CFRP type (B) from one to 3 for circular columns can increase the column's ultimate loads by around eight times compared to unjacketed columns. However, in the case of strengthened square and rectangular columns with CFRP, the increase of the ultimate loads of columns can reach up to six times and two times, respectively.

Determinants of Capital Structure of Korea Listed Firms (우리나라 상장기업(上場企業)의 자본구조(資本構造) 결정요인(決定要因)에 관한 연구(硏究))

  • Shin, Min-Shik
    • The Korean Journal of Financial Management
    • /
    • v.6 no.2
    • /
    • pp.33-69
    • /
    • 1989
  • The Purpose of this study is to test empirically the determinants of capital structure of the Korea Listed Firms. In order to accomplish the purpose of this study, both literature survey and empirical test have been made. For the empirical test, agency and asymmetric information factors as well as traditional ones have been throughly reviewed. Traditional factors tested in this study include firm-size, collateral value of the assets, business risk, tax, non-debt tax shields, and industry effects. Agency and asymmetric information factors include growth opportunities, the percentage of outstanding equity held by inside stockholders, and the number of inside stockholders. From the results of the cross-sectional regression analysis, the adjusted R-square is 1931%, and the overall F-value indicates significance. For the analysis period, the signs of the variables except business risk are as predicted. Firm-size, collateral value of the assets, and business risk significant at the.01-.05 level. In order to determine the influence of industry factors on the financial leverage, a total of 8 dummy variables are added to the regression model. The adjusted R-square inclosed by 4.2% for the first analysis period(1983-1985) and 6% for the second analysis period(1986-1987). This suggests that industry factors are significant in explaining the variations in financial leverage across firms. In order to pursue the influence of agency and asymmetric information factors on the financial leverage, again the cross-sectional regression analysis is done for the middle size firms gruop(n=40). The adjusted R-square increased by 9.8% for the first analysis period(1983-1985) and 6.1% for the total analysis period(1983-1987), and all the signs was as predicted. But both the variables except the number of inside stockholders was not significant.

  • PDF

Experimental study of cactus-like body shape on flow-induced vibration mitigation of clustered cylinders

  • Shi, Chen;Liu, Yang;Wang, Jialu;Chen, Fabo;Liu, Zhihui;Bao, Xingxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.194-207
    • /
    • 2021
  • Vortex-Induced Vibration (VIV) is a major contributor to the fatigue damage of marine risers which are often arranged in an array configuration. In addition to helical strakes and fairings, studies have been strived in searching for possible VIV suppression techniques. Inspired by giant Saguaro Cacti, flexible cylinders of different cactus-shaped cross sections were tested in a water tunnel facility, and test results showed that cactus-like body shapes reduced VIV responses of a cylinder at no cost of significant increase of drag. A series of experiments were conducted on a pair of two tandem-arranged flexible cylinders and an array of four cylinders in a square configuration to investigate the effects of wake on the dynamic responses of cylinders and the VIV mitigation effectiveness of the cactus-like body shape. Results showed that the cylinders in a square configuration, either at the upstream or downstream positions, might have larger dynamic responses than those of a single cylinder. The cactus-like body shape could mitigate VIV responses of cylinders at upstream positions in an array configuration; however, similar to helical strakes, the mitigation efficiency was reduced on downstream cylinders. Note that the cactus-like cross-sectional shape investigated was not optimized for VIV suppression. The present study indicates that the modification of the cross-sectional shape of a cylinder to a well-designed cactus-like shape may be used as an alternative technique to mitigate the VIV of marine risers.

A Numerical Study of 3-D Flows in Spiral Tubes with Square Cross-Section (Spiral Tube 내에서의 3차원 유동 해석)

  • Hur Nahmkeon;Kim Seongwon
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • Spiral tube heat exchangers can find numerous applications in many engineering fields. Flow in spiral tubes is interest to engineers due to occurrence of secondary flow which enhances the cross-sectional mixing and the heat transfer rate. In the present study, an incompressible viscous 3-D flow in spiral tubes with rectangular cross-section of various torsion rate and Reynolds number is studied by using a finite volume method. It is shown that the axial velocity profile is affected by the secondary flow motion. Because there is some difference from correlation proposed by Hur et al., a lot of analysis and arrangement of experimental results are needed. This study showed the results of variation of hydrodynamic entry length for torsion and Re numbers.

  • PDF

Bending Performance Evaluation of Reinforced Aluminum Square Tube Beams (보강 알루미늄 사각관 보의 굽힘 성능평가)

  • Lee Sung-Hyuk;Choi Nak-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.171-180
    • /
    • 2005
  • Bending performances of aluminum square tube beams reinforced by aluminum plates under three point bending loads have been evaluated using experimental tests combined with theoretical and finite element analyses. A finite element simulation for the three-point bending test was performed. Basic properties of aluminum materials used for initial input data of the finite element simulation were obtained from the true stress-true strain curves of specimens which had been extracted from the Al tube beams. True stresses were determined from applied loads and cross-sectional area records of a tensile specimen with a rectangular cross-section by real-time photographing, and true strains were obtained from in-situ local elongation measurements of the specimen gage portion by the multi-point scanning laser extensometer. Six kinds of aluminum tube beam specimens adhered by aluminum plates were employed fur the bending test. The bending deformation behaviors up to the maximum load described by the numerical simulation were in good agreement with experimental ones. After passing the maximum load, reinforcing plate was debonded from the aluminum tube beam. An aluminum tube beam strengthened by aluminum plate on the upper web showed an excellent bending capability.

Experimental study on Re number effects on aerodynamic characteristics of 2D square prisms with corner modifications

  • Wang, Xinrong;Gu, Ming
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.573-594
    • /
    • 2016
  • Simultaneous pressure measurements on 2D square prisms with various corner modifications were performed in uniform flow with low turbulence level, and the testing Reynolds numbers varied from $1.0{\times}10^5$ to $4.8{\times}10^5$. Experimental models were a square prism, three chamfered-corner square prisms (B/D=5%, 10%, and 15%, where B is the chamfered corner dimension and D is the cross-sectional dimension), and six rounded-corner square prisms (R/D =5%, 10%, 15%, 20%, 30%, and 40%, where R is the corner radius). Experimental results of drag coefficients, wind pressure distributions, power spectra of aerodynamic force coefficients, and Strouhal numbers are presented. Ten models are divided into various categories according to the variations of mean drag coefficients with Reynolds number. The mean drag coefficients of models with $B/D{\leq}15%$ and $R/D{\leq}15%$ are unaffected by the Reynolds number. On the contrary, the mean drag coefficients of models with R/D=20%, 30%, and 40% are obviously dependent on Reynolds number. Wind pressure distributions around each model are analyzed according to the categorized results.The influence mechanisms of corner modifications on the aerodynamic characteristics of the square prism are revealed from the perspective of flow around the model, which can be obtained by analyzing the local pressures acting on the model surface.

Effect of Inclined Wall Number on Heat Transfer and Friction in the Smooth Channel (매끈한 사각채널에서 경사 벽면 수가 열전달과 마찰에 미치는 효과)

  • Lee, Myung-Sung;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.66-72
    • /
    • 2014
  • The local heat transfer and pressure drop of developed turbulent flows in the smooth convergent/divergent channels with rectangular and square cross-sectional areas along the axial distance have been investigated experimentally. The measurement was conducted within the range of Reynolds numbers from 15,000 to 89,000. The channel hydraulic diameter ratios of 0.67 and 1.49 in the rectangular channel with 2 inclined walls and the ratios 0.75 and 1.33 in the square channel with 4 inclined walls are considered. The comparison showed that among the four channels the square divergent channel has the highest thermal performance at the identical mass flow rate, at the identical pumping power, and at the static pressure drop.