• 제목/요약/키워드: Sputtered Cu/mole ratio

검색결과 2건 처리시간 0.021초

D.C. magnetron sputtering에 의해 indium/copper 층이 selenizing된 $CuInSe_2$막의 특성 (Properties of CulnSe$_{2}$ thin films selenizing indium/copper layers prepared by D.C. magnetron sputtering)

  • 한상규;김선재;이형복;이병하;박성
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권3호
    • /
    • pp.298-305
    • /
    • 1995
  • Copper-indium diselenide, $CuInSe_2$, thin films have been fabricated by selenizing Cu/In stacked layers with different sputtered Cu/(Cu+ln) mole ratios at 450.deg. C for 1hr on alumina substrates. The selenium source was selenium vapor. Microstructure, crystallization, and composition of the selenized $CuInSe_2$ films were examined by using scanning electron microscope, X-ray diffraction, Auger electron spectroscopy, and secondary ion mass spectrometry. Electrical resistivity and hall effects were also measured to investigate the electrical properties. As the sputtered Cu/(Cu+In) mole ratio of In/Cu layer increased, the amounts of void and CuSe phase in the selenized films increased but the composition of $CuInSe_2$ phase was the same regardless of the sputtered mole ratio. Comparing the electrical properties of $CuInSe_2$ thin film before and after the chemical etching, it was seen that the electrical resistivity, carrier concentration, and carrier mobility of the selenized films were affected by the amount of CuSe phase which seemed to increase primarily the hole concentration of the selenized films.

  • PDF

P형 전기전도도 특성을 갖는 $Selenized CuInse_2$ 박막의 제조 (Preparation of Seleinzed CuInSeS12T Thin Films P-type Conductivity)

  • 박성;김선재
    • 대한전기학회논문지
    • /
    • 제43권2호
    • /
    • pp.296-302
    • /
    • 1994
  • Polycrystalline CuInSeS12T thin were prepared by depositing Cu/In layer, which was sequentially sputtered varying the Cu/(Cu+In) mole ratio, on glass substrate and selenizing with selenium metal vapor in a nitrogen atmosphere. Compositional and structural, characterization was carried out by X-ray diffraction (XRD), wavelength-dispersive spectroscopy(WDS), and scanning electron microscope(SEM). Electrical characterization was carried out by the measurements of Hall effect, electrical resistivity. Large indium loss occurs in early stage of the selenization process. The selenized films which had mole ratios larger than 0.28 have chalcopyrite CuInSeS12T phase and these that had less mole ratios have sphalerite phase. The selenized films containing CuS1xTSe phase have Cu-rich CuInSeS12T phase and these that did not contain CuS1xTSe have In-rich CuInSeS12T phase. By optimizing the sputtering conditions,it is possible to fabricate CuInSeS12T thin films which have little secondary phases and an appropriate hole concentration (10S015T ~ 10S016TcmS0-3T) for solar cells.