• Title/Summary/Keyword: Spur Gear Forging

Search Result 37, Processing Time 0.021 seconds

Precision Cold Forging of Spur Gear Using the Alloy Steel (합금강을 이용한 스퍼기어의 정밀 냉간 단조)

  • Choi, J.C.;Choi, Y.
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.500-507
    • /
    • 1997
  • The conventional closed-die forgings had been applied to the forging of spur gears. But the forgings require high forging-pressure. In this paper, new precision forging technology have been developed. The developed technology is two steps forging process. Good shaped products are forged successfully with lower forging-pressure than those of conventional forging. The accuracy of the forged spur gear obtained by new precision forging technology is set nearly equal to that of cut spur gear of fourth and fifth class in Korean industrial standard.

  • PDF

Development of Spur Gear Parts for Automotive Actuators using Precision Cold Forging Technology (정밀냉간단조 기술을 적용한 자동차 액추에이터용 스퍼기어 부품개발)

  • D. H. Park;S. C. Han
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.335-343
    • /
    • 2023
  • Spur Gear parts for automobile actuators using existing former forging technology were produced in a total of three processes on a former forging machine. However, in order to improve cost increase due to frequent mold breakage, Spur Gear parts were designed and manufactured in the cold forging process after forming the preform through former forging. In other words, in the existing former forging mold, product seating defects occurred due to horizontal movement, resulting in many product defects and mold damage, so there was an urgent need to improve mold life and product defects. In order to improve this, we tried to improve the mold life by improving the existing 3 former forging processes to a former forging process and 2 cold forging processes. Therefore, We developed Spur Gear parts for automobile actuators were developed by applying precision cold forging technology through a former forging process and 2 cold forging processes to improve mold life.

Analysis of the upsetting type process for spur gear cold forging using 3D-FEM (3차원 유한요소법을 이용한 Upsetting Type Spur Gear 냉간 단조 공정 해석)

  • Chun S.H.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.135-138
    • /
    • 2004
  • Since the upsetting type is superior to an extrusion type to get the dimensional accuracy of cold forged spur gear, the upsetting type process far spur gear cold forging has been studied. FE analysis of upsetting type process fur spur gear cold forging was performed to investigate about flow pattern of workpiece and die stress. To analyze the elastic characteristics of die, both rigid and elastic material model were used during loading stage. Under-filled defects were detected In lower portions of spur gear forged by upsetting type in experimental. When the elastic material model for die was used, the under-filled defects could be predicted. On the other hand, if the material model of die was rigid, the defects could not been presented because the die deflection was not considered.

  • PDF

Upper Bound Analysis for Forging of Spur Gears (스퍼어기어의 단조에 관한 상계해석)

  • 조해용;최재찬;최종웅
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.41-53
    • /
    • 1995
  • Forging of spur gears has been investigated by means of upper-bound method. The term forging means forging of spur gears with solid cylindrical billets, hollow billets with flat punch. Kinematically admissbile velocity field for forging of spur gears has been proposed in this study. The 1/2 pitch of spur gear has been divided into seven dieformation regions, wherein, an involute curve has been introduced to represent the shape of die profile. Especially neutral surface has been introduced intor forging of hollow gears from hollow billets. By using the kinematically admissible velocity field, the powder requirements and suitable conditions for forging fo spur gears were successfully calculated with numerical method. According to the analysis , the acceptable number of teeth for forging of spur gears is from 15 to 20.

  • PDF

Precision Cold Forging of Spur Gear Using the Alloy Steel (합금강을 이용한 스퍼기어의 정밀 냉간 단조)

  • Choi, J.C.;Choi, Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.172-175
    • /
    • 1997
  • The conventional closed-die forgings had been applied to the forging of spur gears. But the forgings require high forging-pressure. In this paper, new precision forging technology have been developed. The developed technology is two steps forging process. Good shaped products are forged successfully with lower forging-pressure than those of conventional forging

  • PDF

A Study on The Design of Prestressed Die for Spur Gear Forging (스퍼기어 단조용 예압된 금형의 설계에 관한 연구)

  • 허관도;여홍태;송요선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.19-22
    • /
    • 2003
  • In this study, the design of prestressed die for spur gear forging have been investigated. The stress concentration at notch of the die insert is very important in the design of die for the forging of spur gear such as non-axisymmetric geometry. In the previous study, the flexible tolerance method was used in order to search the optimal value of design variables considering the constrain conditions. In the design process, it was also involved the safety factor to the yield strength of each ring by considering allowable tensile or compressive hoop stress in each ring. Using this technique, the die deign for spur gear forging has been successfully performed without yielding of the die after shrink fitting and during forging.

  • PDF

Die design on the Precision Cold Forging of Spur Gear (평기어의 정밀 냉간단조 금형설계)

  • 권혁홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.242-247
    • /
    • 1998
  • The conventional closed-die forging processes had been applied to forging of the spur gears. But this type process requires high pressure. The commercial finite element analysis code ANSYS for the stress and elastic deformation of non-axisymmetric die was adopted in this study. In the non-axisymmetric die such as gear forging, maximum stresses were imposed on the tip of the gear tooth. When the stress exceeds yield strength of insert die, many approaches were attemped to prevent the die failure. Good shaped products are forged successfully. This type process could by used as an advanced technique to replace conventional hobbing process of gear.

  • PDF

FEM Analyses of Hot Forging and Cold Sizing of a Spur Gear (스퍼어기어의 열간단조와 냉간사이징의 유한요소해석)

  • 박종진;이정환
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 1996
  • Recently, precision forging techniques are applied to manufacture spur gears. Compared to conventional machining, they produce parts of better mechanical properties and less residual stresses with a much higher production rate. In the present investigation a rigid-plastic three dimensional finite element method was applied to analyze hot forging and cold sizing of a spur gear by closed dies. The involute curve of a tooth profile was approximated by a circle close to the curve. Results of the analyses make it possible to predict local strengths of the gear die failure and an appropriate preform for cold sizing. It was found that the preform for cold sizing. It was found that the preform for the cold sizing is the most important because it determines whether the gears especially teeth can be successfully formed.

  • PDF

A Study on the Forging of Spur Gears with Variation of Inner Diameter in Hollow Billets (중공소재의 재경 변화에 따른 스퍼어기어 단조에 관한 연구)

  • 조해용;최재찬;최종웅;민규식
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.257-266
    • /
    • 1995
  • A simulation method based on upper bound method is developed in order to characterize forging characters in forging of spur gears. In this paper, utilizing a kinematically admissible velocity field and applying it to investigate the effect of inner diameter of holow billet. In the analysis, to predict the variation of inner diameter of hollw billet, neutral surface has been introduced. The neutral surface of each step is assumed as a circle and determined in order to have minimum forging energy by golden section method. By this method, the variation of inner diameter of billet during spur gear forging is successfully predicted. As a result, the selection of inner diameter of initial billet is very important to reduce the forging load.

  • PDF

A study on the changes of involute-curve of spur gear die for cold forging and forged part (냉간 단조 스퍼어 기어의 금형과 단조품의 인볼류트 곡선 변화 연구)

  • 천세환;이정환;이영선;배원병
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.44-48
    • /
    • 2003
  • In metal working, cold forging that has profit to satisfy dimension accuracy is using in various manufacturing products. Recently, most of the interest thing is precision forging of gear, Gear forging product is more strength than broaching gear, and it has many advantages with reduction of factory expenses. The reason of difficulty to improve accuracy of gear dimension compare to another products is the dimension accuracy is very high, approximately 10$\mu\textrm{m}$, and because die of involute teeth and elastic strain of forged tool differ from standard curve. This paper represent quantitative analysis of die and teeth of forged tool, namely difference of curves, with experiments and analyze the factor of dimension gap, finally, will design compensated involute curve.

  • PDF