• Title/Summary/Keyword: Spring rainfall

Search Result 189, Processing Time 0.027 seconds

Development of a Data Acquisition System for the Long-term Monitoring of Plum (Japanese apricot) Farm Environment and Soil

  • Akhter, Tangina;Ali, Mohammod;Cha, Jaeyoon;Park, Seong-Jin;Jang, Gyeang;Yang, Kyu-Won;Kim, Hyuck-Joo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.426-439
    • /
    • 2018
  • Purpose: To continuously monitor soil and climatic properties, a data acquisition system (DAQ) was developed and tested in plum farms (Gyewol-ri and Haechang-ri, Suncheon, Korea). Methods: The DAQ consisted of a Raspberry-Pi processor, a modem, and an ADC board with multiple sensors (soil moisture content (SEN0193), soil temperature (DS18B20), climatic temperature and humidity (DHT22), and rainfall gauge (TR-525M)). In the laboratory, various tests were conducted to calibrate SEN0193 at different soil moistures, soil temperatures, depths, and bulk densities. For performance comparison of the SEN0193 sensor, two commercial moisture sensors (SMS-BTA and WT-1000B) were tested in the field. The collected field data in Raspberry-Pi were transmitted and stored on a web server database through a commercial communications wireless network. Results: In laboratory tests, it was found that the SEN0193 sensor voltage reading increased significantly with an increase in soil bulk density. A linear calibration equation was developed between voltage and soil moisture content depending on the farm soil bulk density. In field tests, the SEN0193 sensor showed linearity (R = 0.76 and 0.73) between output voltage and moisture content; however, the other two sensors showed no linearity, indicating that site-specific calibration is important for accurate sensing. In the long-term monitoring results, it was observed that the measured climate temperature was almost the same as website information. Soil temperature information was higher than the values measured by DS18B20 during spring and summer. However, the local rainfall measured using TR 525M was significantly different from the values on the website. Conclusion: Based on the test results obtained using the developed monitoring system, it is thought that the measurement of various parameters using one device would be helpful in monitoring plum growth. Field data from the local farm monitoring system can be coupled with website information from the weather station and used more efficiently.

Water Quality Monitoring by Snowmelt in Songcheon, Doam Lake Watershed (도암호 유역의 융설에 의한 수질 변화 모니터링)

  • Kwon, Hyeokjoon;Hong, Dahye;Byeon, Sangdon;Lim, Kyoungjae;Kim, Jonggun;Nam, Changdong;Hong, Eunmi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.87-95
    • /
    • 2021
  • The Doam Lake Watershed is one of Gangwon-do's non-point source management areas. This area has a lot of snowfall in winter, and it is expected that there will be a lot of soil erosion in early spring due to snow melting. In this study, snow melting was monitored in the Doam Lake watershed from February to 3, 2020. It was conducted to analyze the water quality changes by calculating the concentration of non-point source pollution caused by snowmelt, and to compare the concentration of water quality during snowmelt event with rainfall and non-rainfall event. As a result of water quality analysis, Event Mean Concentration (EMC) at the first monitoring was SS 33.9 mg/L, TP 0.13 mg/L, TN 4.33 mg/L, BOD 1.35 mg/L, TOC 1.84 mg/L. At the second monitoring, EMC were SS 81.3 mg/L, TP 0.15 mg/L, TN 3.12 mg/L, BOD 1.32 mg/L, TOC 3.46 mg/L. In parameter except SS, it showed good water quality. It is necessary to establish management measures through continuous monitoring.

Optimum Capacity of Retention Basin for Treating Nonpoint Pollutants and Its Removal Efficiency in Industrial Complex Areas (산업단지내 비점오염물질 처리를 위한 적정 저류조 용량 산정 및 처리효율)

  • Kim, Lee-Hyung;Lee, Byung-sik;Kwon, Soo-Youl
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.75-85
    • /
    • 2005
  • The Construction of industrial complex areas means the increase of imperviousness rate and the increase of nonpoint pollutant emissions during a rainfall. Generally the retention basin can become the alternative for removing and controling these nonpoint pollutants. Recently Ministry of Environment are trying to change the purpose of retention basins from flooding control to nonpoint pollutant control. In order to propel the stormwater management program, administration plan of stormwater management is enacted in Spring, 2005. Hereafter, in a newly developing area, the best management practices should be established to control the nonpoint pollutant. Landuses of the research area are classified to the categories of the 1st manufacturing industry, metal industry, fiber and chemical product manufacturing industry, etc. Therefore, this research was performed to understand washed-off characteristics of stormwater and to suggest the controling method of nonpoint pollutants. The optimum capacity of the retention basin can be determined by analyzing the relationships among data of rainfall, runoff, washed-off pollutants from the areas. The rainfall analysis using the data of normal year, recent 2, 5 and 10 years shows that the 80% rainfall frequency was occurred on 10mm accumulated rainfall, but which is not considered the first flush effect. However, by considering the first flush effect, the appropriate treatment capacity of rainfall can be decreased to 4-5mm accumulated rainfall. Using the criteria, the optimum capacity of retention basin is determined to $12,000m^3$ in the research area. The washed-off nonpoint pollutant loading from the areas have beeb calculated to 435ton/yr for TSS, 238ton/yr for COD, 8,518kg/yr for TKN and 1,816kg/yr for TP. The mass of 78.3ton/yr for TSS, 20.4ton/yr for BOD, 128.6ton/yr for COD, 4.6ton/yr for TKN and 980kg/yr for TP can be reduced by constructing the retention basin. The sediment accumulation rate is also calculated by $6.53kg/m^2-hr$.

  • PDF

Impact Assessment of Agricultural Reservoir on Streamflow Simulation Using Semi-distributed Hydrologic Model (준분포형 모형을 이용한 농업용 저수지가 안성천 유역의 유출모의에 미치는 영향 평가)

  • Kim, Bo Kyung;Kim, Byung Sik;Kwon, Hyun Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.11-22
    • /
    • 2009
  • Long-term rainfall-runoff modeling is a key element in the Earth's hydrological cycle, and associated with many different aspects such as dam design, drought management, river management flow, reservoir management for water supply, water right permission or coordinate, water quality prediction. In this regard, hydrologists have used the hydrologic models for design criteria, water resources assessment, planning and management as a main tool. Most of rainfall-runoff studies, however, were not carefully performed in terms of considering reservoir effects. In particular, the downstream where is severely affected by reservoir was poorly dealt in modeling rainfall-runoff process. Moreover, the effects can considerably affect overall the rainfallrunoff process. An objective of this study, thus, is to evaluate the impact of reservoir operation on rainfall-runoff process. The proposed approach is applied to Anseong watershed, where is in a mixed rural/urban setting of the area and in Korea, and has been experienced by flood damage due to heavy rainfall. It has been greatly paid attention to the agricultural reservoirs in terms of flood protection in Korea. To further investigate the reservoir effects, a comprehensive assessment for the results are discussed. Results of simulations that included reservoir in the model showed the effect of storage appeared in spring and autumn when rainfall was not concentrated. In periods of heavy rainfall, however, downstream runoff increased in simulations that do not consider reservoir factor. Flow duration curve showed that changes in streamflow depending upon the presence or absence of reservoir factor were particularly noticeable in ninety-five day flow and low flow.

Monthly Characteristics of Rainwater Chemistry at a Coastal Site in Southwestern Japan

  • Toyonaga, Satoshi;Zhang, Daizhou
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • Monthly characteristics of rainwater chemistry at a coastal site in southwestern Japan were examined based on an eight year record. In the period November-May when rain was mainly caused by cyclones, the monthly mean concentrations of $nss-{SO_4}^{2-}$, ${NO_3}^-$, ${NH_4}^+$, $nss-Ca^{2+}$, $Na^+$ and $Cl^-$ over the eight years were 25.1-57.8, 9.9-25.0, 11.3-31.4, 5.5-18.7, 24.2-154.9 and $30.0-178.5{\mu}eq\;L^{-1}$, respectively. In June and July when rain was mainly caused by stationary fronts, i.e. Meiyu fronts, the concentrations were 14.4-20.7, 7.2-9.5, 7.7-12.9, 4.1-6.8, 21.7-33.6 and $26.4-40.5{\mu}eq\;L^{-1}$, respectively. In August and September when typhoons contributed substantial rainfall, the respective concentrations of $Na^+$ and $Cl^-$ were as high as 97.7-105.3 and $116.8-122.9{\mu}eq\;L^{-1}$, while the concentrations of other ions were low. These results indicate a large variation of monthly rainwater chemistry, which is basically dependent on the synoptic weather patterns causing rain. From later autumn to early spring, rain contains ions in high concentration and large variation ranges. In the Meiyu season, rain contains less ions which vary in a range much smaller than that in later autumnearly spring. In summer and autumn, the concentrations are low, except $Na^+$ and $Cl^-$ which can be large due to typhoons' contribution.

A Study on the Recharge Characteristics of Groundwater in Subcatchment including Spring Water Wells (샘물 취수정이 위치한 소유역의 지하수함양 특성에 관한 연구)

  • Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.303-314
    • /
    • 2020
  • Bottled water companies submit monthly hydrologic data including periodical environmental effects investigation, daily water production capacity, water production, water level, water chemistry (pH, EC, temperature) per hour and strictly manage groundwater by periodical analyses. Thus few problems concerning drawdown due to excess intake of groundwater take place. Nevertheless, bottled water companies are imprinted as a contribution to civil affairs resulted regarding groundwater near the companies. Therefore, a new method is required during water balance analysis in environmental effects evaluation, which should be compatible with the evaluation by hydrologic experts as well more accessible to non-experts. In this study, water level of surface water and recharge rate in subcatchment where water production wells are located were measured and monthly baseflow rates were separated from normal streams. Besides, recharge properties of groundwater and surface water in the same catchment area were estimated using analyses of oxygen and hydrogen isotopes in groundwater (production well), surface water, and rainfall.

A Study on the Characteristics of Ambient Suspended Particulate Matter at Coastal Area, Kangwha (해안지역 대기부유미립자상 물질의 특성에 관한 연구)

  • 강공언;우상윤;강병욱;김희강
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.4
    • /
    • pp.1-9
    • /
    • 1994
  • In order to investigate the regional level of air pollutants at Kangwha island situated on the western coast in Korea, the suspended particulate matter samples were collected by using the low volume air sampler on ten interval from March 1992 to February 1993 and the mass concentration of suspended particulate matter (SPM) and the chemical composition of water-soluble major ionic components in SPM samples were measured. During the sampling period, the average concentration of SPM under diameter 10 $\mu$m was found to be 48 $\mu$g/m$^3$ (+ 12). The seasonal concentration of SPM was showed in order of spring>fall>winter>summer. It was considered that higher concentration on spring than other season was affected by the long-range transport of Yellow sand particulate from China continent and lower concentration on summer by the washout and rainout effect of large rainfall. The content of water-soluble component in SPM samples was founded to be about 31% (14.69 $\mu$g/m$^3$) and 65% was unknown or unanalyzed. The content of cationic component showed in order of NH$_4^+$ (44.6%)>Na$^+$ (21.2%)>K$^+$ (14.7%)>Ca$^{2+}$ (13.6%)>Mg$^{2+}$ (5.9 %) and the content of anionic component SO$_4^{2-}$ (62.5%)>NO$_3^-$ (22.3%)>Cl$^-$ (15.2%), respectively. This fact indicates that ammonium and sulfate ion of water-soluble component in SPM sample were dominant in this region. From the chemical composition of water-soluble component, the most of Na$^+$, Mg$^{2+}$ and Cl$^-$ were originated from seawater source but K$^+$, Ca$^{2+}$ and SO$_4^{2-}$ were originated from other non-marine source. The contribution of seasalt to the composition of precipitation was 23%.

  • PDF

Effect of Environmental Factors on Phytoplankton Communities and Dominant Species Succession in Lake Cheongpyeong (환경요인에 따른 청평호 식물플랑크톤 군집 및 우점종의 천이 특성)

  • Youn, Seok Jea;Kim, Hun Nyun;Im, Jong Kwon;Kim, Yong-Jin;Baek, Jun-Soo;Lee, Su-Woong;Lee, Eun Jeong;Yu, Soon Ju
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.913-925
    • /
    • 2017
  • Phytoplankton populations were examined at three sites in Lake Cheongpyeong, South Korea from March 2008 to December 2016, including measurement of phytoplankton communities and their dominant species, abundance and environmental factors. The annual average ranges of water temperature, dissolved oxygen and conductivity were $15.2-18.8^{\circ}C$, 10.3-12.2 mg/L, $86-140{\mu}S/cm$, respectively, with similar values at all studied sites. The highest phytoplankton cell density was observed in spring and fall, and it subsequently decreased rapidly during heavy rainfall. Diatoms were dominant in spring (mainly Stephanodiscus hantzschii, Asterionella formosa) and fall (mainly Aulacoseira granulata), while greenalgae and cyanobacteria had high appearance in early-summer and summer, respectively, indicating that water temperature is the most important factor influencing their growth. Stephanodiscus hantzschii and Asterionella formosa frequently occurred at low water temperature ($4.5-15.0^{\circ}C$ and $5.4-21.6^{\circ}C$, respectively) while Aulacoseira granulata and Anabaena spp. were favored by high water temperature (8.6-28.4 and $14.9-26.2^{\circ}C$, respectively) and phosphorus. Additionally, Fragilaria crotonensis occurred at low nutrient conditions. Rhodomonas spp. frequently appeared year-round.

Characteristics of Algal Abundance and Statistical Analysis of Environmental Factors in Lake Paldang (팔당호 조류발생 특성 및 수질환경인자의 통계적 분석)

  • Park, Hae-Kyung;Lee, Hyun-Ju;Kim, Eun-Kyung;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.584-594
    • /
    • 2005
  • The spatio-temporal abundance pattern of algae in Lake Paldang from 2002 to 2004 was investigated. The concentration of chlorophyll a representing algal biomass had fluctuated intensively throughout the year. Among three years, the highest algal biomass was shown in 2002, and typical growth peak of concentration of chlorophyll a was occurred in spring and autumn. There had been frequent rainfall in spring drought period in 2003 and it resulted in the decrease of the algal biomass. The distribution pattern of four algal groups on the surface water of Lake Paldang showed different abundance by season and by water area. In particular, different algal growth characteristics by water areas were observed. Influences of various environmental parameters on algal abundance in four water areas of Lake Paldang were analyzed statistically. From the results of Peason correlation analysis, it was understood that the kinds and affects of environmental parameters were different according to water areas and seasons. Based on the factors analysis of environmental parameters on the concentration of chlorophyll a, stepwise regression models whose independent variables were the factors produced by factor analysis and dependent variable was the concentration of chlorophyll a were derived by water areas and seasons. As a whole, factors related with organics and photosynthesis were revealed to have high affects to algal abundance, whereas limiting nutrients such as phosphorus and nitrogen showed little affect in Lake Paldang.

Analysis of Drought Based on the Weather Data in Suwon District (기상 자료에 의한 수원 지역 한발 분석)

  • Oh, Yong-Taeg;Shin, Jae-Sung;Im, Jung-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.3
    • /
    • pp.209-225
    • /
    • 1997
  • Daily rainfalls and evaporations from copper pan measured in Suweon from 1964 to 1996 were figured respectively so that past soil moisture deficits can be understood clearly at a glance in relation to the characteristics of weather. Past drought intensities in Suweon were computed on the basis of Oh's 50mm pan model estimating drought in terms of daily, monthly shortage of evapotranspiration and growthless time fraction. Yearly differences in drought seem to result mainly from yearly differences in rainfall distribution and intensity, because there is the periodical similarity in evaporation from year to year. The most intense drought continued from December, 1964 to June, 1965 for 190 days and the most frequent rainfalls were observed from June, 1989 to August, 1990 for 15 months. The applied Oh's drought estimation model was reinforced with figuring programs with a view to later application for other districts. Present economic value index of irrigation were distributed in the range of 120% to 210% of one season yield for spring chinese cabbage, calculated on the basis of 10 year's accumulation of its expectable future yield increase. Therefore, the same value can be invested for the installation of new irrigation system even only for spring chinese cabbage, if its depreciation period is 10 years.

  • PDF