• Title/Summary/Keyword: Spring rainfall

Search Result 189, Processing Time 0.024 seconds

Temporal Fluctuation and Ecological Characteristics of Noctiluca scintillans (Dinophyceae) in the Coastal Waters of Incheon, Korea (인천 연안에서 와편모류 Noctizuca scintillans의 시간적 변동과 생태학적 특성)

  • Yoo, Jeong-Kyu;Youn, Seok-Hyun;Choi, Joong-Ki
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.4
    • /
    • pp.372-379
    • /
    • 2006
  • In order to study temporal fluctuation and ecological characteristics of Noctiluca scintillans, its abundance was investigated in correlation with water temperature, salinity, precipitation, chlorophyll a concentration and copepods abundance in the coastal waters of Incheon from January 1999 to December 2000. N. scintillans was seasonally abundant during spring and autumn with temperature ranging from 10.3 to $21.5^{\circ}C$, but depleted in winter and summer. Low temperature below $4.5^{\circ}C$ in winter and low salinity due to high rainfall in summer led N. scintillans to disappear. A Cross Correlation Analysis (CCA) showed that chlorophyll a concentration was positively correlated with abundance of N. scintillans at the time lags of 10 days. This suggests that phytoplankton may be a contributing factor for increasing abundance of N. scintillans. During spring, eggs of Acartia hongi were found in 2.9 to 21.1% of individuals of N. scintillans. It was deduced that 1.2 to 49.5% of the eggs produced by A. hongi was preyed upon by N. scintillans. Therefore, N. scintillans may control the population size of initial developmental stage of A. hongi in the costal waters of Incheon.

Water Balance Analysis of Pumped-Storage Reservoir during Non-Irrigation Period for Recurrent Irrigation Water Management (순환형 농업용수관리를 위한 농업용 저수지의 비관개기 양수저류 추정)

  • Bang, Na-Kyoung;Nam, Won-Ho;Shin, Ji-Hyeon;Kim, Han-Joong;Kang, Ku;Baek, Seung-Chool;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.1-12
    • /
    • 2020
  • The extreme 2017 spring drought affected a large portion of South Korea in the Southern Gyeonggi-do and Chungcheongnam-do districts. This drought event was one of the climatologically driest spring seasons over the 1961-2016 period of record. It was characterized by exceptionally low reservoir water levels, with the average water level being 36% lower over most of western South Korea. In this study, we consider drought response methods to alleviate the shortage of agricultural water in times of drought. It could be to store water from a stream into a reservoir. There is a cyclical method for reusing water supplied from a reservoir into streams through drainage. We intended to present a decision-making plan for water supply based on the calculation of the quantity of water supply and leakage. We compared the rainfall-runoff equation with the TANK model, which is a long-term run-off model. Estimations of reservoir inflow during non-irrigation seasons applied to the Madun, Daesa, and Pungjeon reservoirs. We applied the run-off flow to the last 30 years of rainfall data to estimate reservoir storage. We calculated the available water in the river during the non-irrigation season. The daily average inflow from 2003 to 2018 was calculated from October to April. Simulation results show that an average of 67,000 tons of water is obtained during the non-irrigation season. The report shows that about 53,000 tons of water are available except during the winter season from December to February. The Madun Reservoir began in early October with a 10 percent storage rate. In the starting ratio, a simulated rate of 4 K, 6 K, and 8 K tons is predicted to be 44%, 50%, and 60%. We can estimate the amount of water needed and the timing of water pump operations during the non-irrigation season that focuses on fresh water reservoirs and improve decision making for efficient water supplies.

Influences of Fractionation of Stable Isotopic Composition of Rain and Snowmelt on Isotopic Hydrograph Separation (강우와 융설의 안정동위원소 변동에 의한 동위원소 수문분리법의 계통오차계산)

  • Lee, Jeonghoon;Koh, Dong-Chan;Choo, Mi Kyung
    • Journal of the Korean earth science society
    • /
    • v.35 no.2
    • /
    • pp.97-103
    • /
    • 2014
  • An isotopic hydrograph separation technique has been able to determine the contribution of new water (event water such as rain or snowmelt) and old water (pre-event water like groundwater) to a stream hydrograph for last several decades using stable water isotopes. It is based on the assumption that the isotopic compositions of both new water and old water at a given instant in time are known and the stream water is a mixture of the two waters. In this study, we show that there is a systematic error (standard error in the new water fraction) in the isotopic hydrograph separation if the average isotopic compositions of new water were used ignoring the temporal variations of those of new water. The standard error in the new water fraction is caused by: (1) the isotopic difference between the average value and temporal variations of new water; (2) the new water fraction as runoff contributing to the stream during rainfall or spring melt; and (3) the isotopic differences between new and old water (inversely). The standard error is large, in particular, when new water dominates the stream flow, such as runoff during intense rainfall and in areas of low infiltration during spring melt. To reduce the error in the isotopic hydrograph separation, incorporation of fractionation in the isotopic composition of new water observed at a point should be considered with simultaneous sampling of new water, old water and stream water.

Climate Change Impacts on Agricultural Drought for Major Upland Crops using Soil Moisture Model -Focused on the Jeollanam-do- (토양수분모형을 이용한 주요 밭작물의 미래 가뭄 전망 -전라남도 지역을 중심으로-)

  • Hong, Eun-Mi;Nam, Won-Ho;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.65-76
    • /
    • 2015
  • Estimating water requirements for upland crops are characterized by standing soil moisture condition during the entire crop growth period. However, scarce rainfall and intermittent dry spells often cause soil moisture depletion resulting in unsaturated condition in the fields. Changes in rainfall patterns due to climate change have significant influence on the increasing the occurrence of extreme soil moisture depletion. Therefore, it is necessary to evaluate agricultural drought for upland crop water planning and management in the context of climate change. The objective of this study is to predict the impacts of climate change on agricultural drought for upland crops and changes in the temporal trends of drought characteristics. First, the changes in crop evapotranspiration and soil moisture in the six upland crops, such as Soybeans, Maize, Potatoes, Red Peppers, Chinese Cabbage (spring and fall) were analyzed by applying the soil moisture model from commonly available crop and soil characteristics and climate data, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions.

Estimation of Application Cost and Utilization of Turf Grass VFS for Reduction of Uplands NPS Pollution (밭 비점오염저감을 위한 잔디초생대 적용 비용 및 활용성 평가)

  • Lee, Seul-Gi;Jang, Jeong-Ryeol;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.75-83
    • /
    • 2015
  • This study was aimed to estimate the total application cost and utilization of Turf grass VFS application through the field experiment. The experimental plots were constructed in an upland field of Iksan city within the Saemangeum watershed. Turf grass was transplanted at the down-slope edge of the pollution source area in each of the treated plots. Three rainfall events were monitored during the experiment period, and the rainfall-runoff relationships and NPS pollution reduction effects of the VFS systems were assessed. As results, the reduction ratio of runoff volume ranged 14.1~64.0 %, while the NPS pollution reduction ratio ranged 9.8~73.9 % for SS, 24.0~84.2 % for T-N, 31.6~80.9 % for T-P respectively. The total cost of VFS application was estimated by considering purchase cost of Turf grass sods and construction and maintenance costs of VFS system as well as the loss caused by giving up crop cultivation for the area needed to construct the VFS. The total cost of the VFS was estimated to be approximately \3,379,000/ha/year for the first year of application, and this cost could be decreased to \1,899,000/ha/year from the second year as the construction cost of VFS could no longer need to be counted afterwards. Apart from the NPS pollution reduction effects, the possible utilization of VFS was examined by detaching Turf grass within 40 % of VFS area for sale during spring time when the VFS systems fully covered. The benefit of selling the detached Turf grass sods was estimated as \1,260,000/ha/year, and also found that the VFS area successfully recovered by the time of the summer period. This benefit could attract farmers to adopt the VFS technique to manage agricultural NPS pollution.

Characteristics of Release Rate of Nutrients from Sediment in Lake Paldang and Lake Cheongpyeong (팔당호와 청평호 퇴적물에서 영양염류 용출 특성)

  • Lee, Kyoo;Choi, Myung-Jae;Park, Hae-Kyung;Lee, Jang-ho
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.742-749
    • /
    • 2009
  • To examine the characteristics of the nutrient release from the sediments in two reservoirs, Lake Paldang and Lake Cheungpyeung, we analyzed physical and chemical properties of the sediments and calculated the nutrient release rates from the sediments. The particle properties of sediments in Lake Paldang changed from silt to sand after summer rainy season, especially in the water area of the Kyeungan River where the water depth was shallow and the width of river was narrow. The sediments in Lake Cheungpyeung had higher contents of silt and clay than in Lake Paldang, and the particle size was not much different before and after rainfall. The release rates of nutrients in two lakes varied with the kind of nutrients and the season. The release rates of DTN and ${NH_4}^+-N$ in Lake Paldang were faster in spring than autumn. But the Lake Cheungpyeung showed similar values of release rates before and after summer rainy season. ${NO_3}^--N$ and phosphorous were not released from sediments or were absorbed into sediments all the time in two lakes. Compared with other lakes, the sediments of two lakes consisted of bigger particles and had a lower organic matters content than other lake-type reservoirs. Due to the short hydraulic retention time and no stratification throughout the year in Lake Paldang and Lake Cheungpyeung, the release rates of nutrients from sediment in these reservoirs were lower than other lakes and this seems to be a typical characteristic of river-type reservoirs.

Regional Drought Assessment Considering Climate Change and Relationship with Agricultural Water in Jeju Island (기후변화를 고려한 제주지역의 권역별 가뭄 평가 및 농업용수에의 영향 고찰)

  • Song, Sung-Ho;Yoo, Seung-Hwan;Bae, Seung-Jong
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.625-638
    • /
    • 2013
  • Recently, the occurrences of droughts have been increased because of global warming and climate change. Water resources that mostly rely on groundwater are particularly vulnerable to the impact of precipitation variation, one of the major elements of climate change, are very sensitive to changes in the seasonal distribution as well as the average annual change in the viewpoint of agricultural activity. In this study, the status of drought for the present and future on Jeju Island which entirely rely on groundwater using SPI and PDSI were analyzed considering regional distribution of crops in terms of land use and fluctuation of water demand. The results showed that the precipitation distribution in Jeju Island is changed in intensity as well as seasonal variation of extreme events and the amount increase of precipitation during the dry season in the spring and fall indicated that agricultural water demand and supply policies would be considered by regional characteristics, especially the western region with largest market garden crops. Regarding the simulated future drought, the drought would be mitigated in the SPI method because of considering total rainfall only excluding intensity variation, while more intensified in the PDSI because it considers the evapotranspiration as well as rainfall as time passed. Moreover, the drought in the northern and western regions is getting worse than in the southern region so that the establishment of regional customized policies for water supply in Jeju Island is needed.

The Influences of Meteorological Factors, Discount rate, and Weekend Effect on the Sales Volume of Apparel Products (기상요인, 가격할인 및 주말효과가 의류상품 판매량에 미치는 영향)

  • Hwangbo, Hyunwoo;Kim, Eun Hie;Chae, Jin Mie
    • Fashion & Textile Research Journal
    • /
    • v.19 no.4
    • /
    • pp.434-447
    • /
    • 2017
  • This study investigated the effects of influencing factors on the sales volume of apparel products. Based on previous studies, weekend effect, discount rate, and meteorological factors including daily average temperature, rainfall, sea level pressure, and fine dust were selected as independent variables to calculate their effects on sales quantity of apparel products. The daily sales data during 2015 - 2016 were collected from casual brands and outdoor brands which "A" apparel manufacturing company had operated. The actual data of "A" company were analyzed using SAS(R) 9.4 and SAS(R) Enterprise Miner 14.1. The results of this study were as follows: First, the influencing factors on total sales volume of apparel products were proved to be the weekend effect, discount rate, and fine dust. Second, the analysis of influencing factors on sales volume of apparel products according to season showed: 1) In casual brands, the average temperature had a significant influence on the sales volume of spring/summer products, and the sea level pressure affected the sales volume of summer/fall/winter products significantly. 2) In outdoor brands, the average temperature and the fine dust had a significant influence on the sales volume of all season's products. The sea level pressure affected the sales volume of summer/fall/ winter products significantly. The weekend effect and the discount effect affected the sales volume of apparel products partly. Third, the effect of rainfall was not proven significant, which was different from the results of past studies.

Estimation of primary production of the waters around rack oyster farm at Wando, Korea

  • Jeong, Woo-Geon;Cho, Sang-Man
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.4
    • /
    • pp.9.1-9.7
    • /
    • 2018
  • To establish a comprehensive management strategy, as part of the optimization of cultural practice for an oyster rack culture system, we used a numerical model to estimate the primary production in the waters on the eastern coast of Wando island, South Korea. The estimated primary production ranged from 17.12 to $1052.55mgC\;m^{-2}day^{-1}$ ($204.22{\pm}224.75mgC\;m^{-2}day^{-1}$ in average). Except for the times of peak phytoplankton blooms, the estimated primary production (PP) was consistently under $200mgC\;m^{-2}day^{-1}$, which is more similar to the value of PP measured off the western coast of South Korea than the southern coast. No clear relationship was observed between nitrogen content and rainfall with the exception of heavy rainfall events, indicating that precipitation might not be the main source of nutrients in these waters. No clear influence was observed from Doam tidal discharge, located 24 km north from these waters due to main tide comes in this area from the channel between Gunwe-myeon in Wando island and Pukpyeong-myeon in Haenam-gun. Because of the shallow water depth and strong tidal current, resuspension of sediments, which causes an input of nitrogen into the system, could be easily caused by even mild wind and the infrequent passing of ships. Microscopic examination of the phytoplankton composition showed additional contribution of benthic species such as Paralia sulcata into the waters, which increase the productivity of oyster farms in the waters. The availability of nitrate and phosphate for primary production was temporarily limited throughout most of the spring and autumn blooming season.

Projection of Consumptive Use and Irrigation Water for Major Upland Crops using Soil Moisture Model under Climate Change (토양수분모형을 이용한 미래 주요 밭작물 소비수량 및 관개용수량 전망)

  • Nam, Won Ho;Hong, Eun Mi;Jang, Min Won;Choi, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.77-87
    • /
    • 2014
  • The impacts of climate change on upland crops is great significance for water resource planning, estimating crop water demand and irrigation scheduling. The objective of this study is to predict upland crop evapotranspiration, effective rainfall and net irrigation requirement for upland under climate change, and changes in the temporal trends in South Korea. The changes in consumptive use and net irrigation requirement in the six upland crops, such as Soybeans, Maize, Potatoes, Red Peppers, Chinese Cabbage (spring and fall) were determined based on the soil moisture model using historical meteorological data and climate change data from the representative concentration pathway (RCP) scenarios. The results of this study showed that the average annual upland crop evapotranspiration and net irrigation requirement during the growing period for upland crops would increase persistently in the future, and were projected to increase more in RCP 8.5 than those in RCP 4.5 scenario, while effective rainfall decreased. This study is significant, as it provides baseline information on future plan of water resources management for upland crops related to climate variability and change.