• Title/Summary/Keyword: Spring rainfall

Search Result 191, Processing Time 0.024 seconds

Comparative Analysis of Italian Ryegrass Vegetation Indices across Different Sowing Seasons Using Unmanned Aerial Vehicles (무인기를 이용한 이탈리안 라이그라스의 파종계절별 식생지수 비교)

  • Yang Seung Hak;Jung Jeong Sung;Choi Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.103-108
    • /
    • 2023
  • Due to the recent impact of global warming, heavy rainfall and droughts have been occurring regardless of the season, affecting the growth of Italian ryegrass (IRG), a winter forage crop. Particularly, delayed sowing due to frequent heavy rainfall or autumn droughts leads to poor growth and reduced winter survival rates. Therefore, techniques to improve yield through additional sowing in spring have been implemented. In this study, the growth of IRG sown in Spring and Autumn was compared and analyzed using vegetation indices during the months of April and May. Spectral data was collected using an Unmanned Aerial Vehicle (UAV) equipped with a hyperspectral sensor, and the following vegetation indices were utilized: Normalized Difference Vegetation Index; NDVI, Normalized Difference Red Edge Index; NDRE (I), Chlorophyll Index, Red Green Ratio Index; RGRI, Enhanced Vegetation Index; EVI and Carotenoid Reflectance Index 1; CRI1. Indices related to chlorophyll concentration exhibited similar trends. RGRI of IRG sown in autumn increased during the experimental period, while IRG sown in spring showed a decreasing trend. The results of RGRI in IRG indicated differences in optical characteristics by sowing seasons compared to the other vegetation indices. Our findings showed that the timing of sowing influences the optical growth characteristics of crops by the results of various vegetation indices presented in this study. Further research, including the development of optimal vegetation indices related to IRG growth, is necessary in the future.

Analysis of 2012 Spring Drought Using Meteorological and Hydrological Drought Indices and Satellite-based Vegetation Indices (기상 및 수문학적 가뭄지수와 위성 식생지수를 활용한 2012년 봄 가뭄 분석)

  • Ahn, So-Ra;Lee, Jun-Woo;Kim, Seong-Joon
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.78-88
    • /
    • 2014
  • This study is to analyze the 2012 spring drought of Korea using drought index and satellite image. The severe spring drought recorded in May of 2012 showed 36.4% of normal rainfall(99.5mm). The areas of west part of Gyeonggi-do and Chungcheong-do were particularly serious. The drought indices both the SPI(Standardized Precipitation Index) and WADI(WAter supply Drought Index) represented the drought areas from the end of May and to the severe drought at the end of June. The drought by SPI completely ended at the middle of July, but the drought by WADI continued severe drought in the agricultural reservoir watersheds of whole country even to the end of the July. On the other hand, the results by spatial NDVI(Normalized Difference Vegetation Index) and EVI(Enhanced Vegetation Index) data from Terra MODIS, both indices showed relatively low values around the areas of Sinuiju, Pyongyang, and west coast of North Korea and Gyeonggi-do and Chungcheong-do of South Korea indicating drought condition. Especially, the values of NDVI and EVI at Chungcheong-do were critically low in June compared to the normal year value.

  • PDF

Drought Forecasting with Regionalization of Climate Variables and Generalized Linear Model

  • Yejin Kong;Taesam Lee;Joo-Heon Lee;Sejeong Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.249-249
    • /
    • 2023
  • Spring drought forecasting in South Korea is essential due to the sknewness of rainfall which could lead to water shortage especially in spring when managed without prediction. Therefore, drought forecasting over South Korea was performed in the current study by thoroughly searching appropriate predictors from the lagged global climate variable, mean sea level pressure(MSLP), specifically in winter season for forecasting time lag. The target predictand defined as accumulated spring precipitation(ASP) was driven by the median of 93 weather stations in South Korea. Then, it was found that a number of points of the MSLP data were significantly cross-correlated with the ASP, and the points with high correlation were regionally grouped. The grouped variables with three regions: the Arctic Ocean (R1), South Pacific (R2), and South Africa (R3) were determined. The generalized linear model(GLM) was further applied for skewed marginal distribution in drought prediction. It was shown that the applied GLM presents reasonable performance in forecasting ASP. The results concluded that the presented regionalization of the climate variable, MSLP can be a good alternative in forecasting spring drought.

  • PDF

Comparative Study on the Runoff Process of Granite Drainage Basins in Korea and Mongolia

  • Tanaka, Yukiya;Matsukura, Yukinori
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.79-84
    • /
    • 2003
  • This study revealed the differences in runoff processes of granite drainage basins in Korea and Mongolia by hydrological measurements in the field. The experimental drainage basins are chosen in Korea (K-basin) and Mongolia (M-basin). Occurrence of intermittent flow in K-basin possibly implies that very quick discharge dominates. The very high runoff coefficient implies that most of effective rainfall quickly discharge by throughflow or pipeflow. The Hortonian overlandflow is thought to almost not occur because of high infiltration capacity originated by coarse grain sized soils of K- basin. Very little baseflow and high runoff coefficient also suggest that rainfall almost does not infiltrate into bedrocks in K-basin. Flood runoff coefficient in M-basin shows less than 1 %. This means that most of rainfall infiltrates or evaporates in M-basin. Runoff characteristics of constant and gradually increasing discharge imply that most of rainfall infiltrates into joint planes of bedrock and flow out from spring very slowly. The hydrograph peaks are sharp and their recession limbs steep. Very short time flood with less than 1-hour lag time in M-basin means that overland flow occurs only associating with rainfall intensity of more than 10 mm/hr. When peak lag time shows less than 1 hour for the size of drainage area of 1 to 10 km2, Hortonian overland flow causes peak discharge (Jones, 1997). The results of electric conductivity suggest that residence time in soils or weathered mantles of M-basin is longer than that of K-basin. Qucik discharge caused by throughflow and pipeflow occurs dominantly in K-basin, whereas baseflow more dominantly occur than quick discharge in M-basin. Quick discharge caused by Hortonian overlandflow only associating with rainfall intensity of more than 10 mm/hr in M-basin.

  • PDF

Responses of Lactuca Sativa (Lettuce) to Fertilization Rates at Various Soil Moisture Conditions at Protected Cultivation

  • Jung, Kang-Ho;Sonn, Yeon-Kyu;Han, Kyoung-Hwa;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.50-56
    • /
    • 2015
  • This research was performed to test the hypothesis that the optimal fertilization rate for lettuce is various with soil moisture conditions. The experiment was conducted under a rainfall-intercepted facility in Suwon, South Korea from 2002 to 2003. Soil was irrigated at 30, 50, or 80 kPa of soil moisture tension at 15 cm soil depth in 2002 spring and fall and 20, 30, 50, or 80 kPa in 2003 spring. Fertilization was performed with four levels in spring for both years: none, 0.5, 1.0, and 1.5 times of the recommended N, P, and K fertilization rate. The irrigation amount increased with decreased irrigation starting point as soil moisture tension. The maximum yield was found at the lowest soil moisture tension in spring while irrigation at 50 kPa resulted in the greatest yield in fall. The yield responses of lettuce to fertilization rates were various with soil moisture condition. In spring, maximum yield was found at 1.0 or 1.5 times of the recommended fertilization rate at 20, 30, and 50 kPa irrigation while 0.5 or 1.0 times of fertilization rate resulted in the maximum yield in fall. Especially for 80 kPa irrigation in 2003 spring, yield was decreased by fertilization. It suggested that the optimum fertilization rate for lettuce is affected by soil moisture condition and that lower fertilization rate should be suggested when soil is managed in drier condition.

Simulation of Indian Summer Monsoon Rainfall and Circulations with Regional Climate Model

  • Singh, G.P.;Oh, Jai-Ho
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2004.06a
    • /
    • pp.24-25
    • /
    • 2004
  • It is well known that there is an inverse relationship between the strength of Indian summer monsoon Rainfall (ISMR) and extent of Eurasian snow cover/depth in the preceding season. Tibetan snow cover/depth also affects the Asian monsoon rainy season largely. The positive correlation between Tibetan sensible heat flux and southeast Asian rainfall suggest an inverse relationship between Tibetan snow cover and southeast Asian rainfall. Developments in Regional Climate Models suggest that the effect of Tibetan snow on the ISMR can be well studied by Limited Area Models (LAMs). LAMs are used for regional climate studies and operational weather forecast of several hours to 3 days in future. The Eta model developed by the National Center for Environmental Prediction (NCEP), the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and Regional Climate Model (RegCM) have been used for weather prediction as well as for the study of present-day climate and variability over different parts of the world. Regional Climate Model (RegCM3) has been widely . used for various mesoscale studies. However, it has not been tested to study the characteristics of circulation features and associated rainfall over India so far. In the present study, Regional Climate Model (RegCM-3) has been integrated from 1 st April to 30th September for the years 1993-1996 and monthly mean monsoon circulation features and rainfall simulated by the model at 55km resolution have been studied for the Indian summer monsoon season. Characteristics of wind at 850hPa and 200hPa, temperature at 500hPa, surface pressure and rainfall simulated by the model have been examined for two convective schemes such as Kuo and Grell with Arakawa-Schubert as the closure scheme, Model simulated monsoon circulation features have been compared with those of NCEP/NCAR reanalyzed fields and the rainfall with those of India Meteorological Department (IMD) observational rainfall datasets, Comparisons of wind and temperature fields show that Grell scheme is closer to the NCEP/NCAR reanalysis, The influence of Tibetan snowdepth in spring season on the summer monsoon circulation features and subsequent rainfall over India have been examined. For such sensitivity experiment, NIMBUS-7 SMMR snowdepth data have been used as a boundary condition in the RegCM3, Model simulation indicates that ISMR is reduced by 30% when 10cm of snow has been introduced over Tibetan region in the month of previous April. The existence of Tibetan snow in RegCM3 also indicates weak lower level monsoon westerlies and upper level easterlies.

  • PDF

The Effects of Meteorological factors on Sales of Apparel Products - focused on apparel sales in the department store- (기상 요인이 의류제품 매출에 미치는 영향분석 -백화점의 의류매출을 중심으로-)

  • 장은영;이선재
    • Journal of the Korean Society of Costume
    • /
    • v.52 no.2
    • /
    • pp.139-150
    • /
    • 2002
  • The purpose of this study was to explore the effects of meteorological factors on sales of apparel products. Basic fiat came out daily meteorological data and sales data of apparel products in department store from 1998 to 2000. Four factors(the average temperature, rainfall, wind velocity, sunshine duration) from the nine meteorological factors were selected and were collected with Korea Meteorological Administration. Sales data were collected with business strategy department of H (department store in Seoul. The sales data were divided into six classifications, which are woman's wear, men's wear, children's wear, golf wear, sports wear, and inner wear. The results of this study were as follows: 1) Sales of apparel products were significantly correlated with the average temperature, rainfall, wind velocity, sunshine duration. Among the meteorological factors, temperature turned out to be the most influential in apparel sales and then the amount of rainfall, sunshine duration affected sales according to apparel classifications differently. 2) There were some differences among the apparel classifications in the effect of meteorological factors on the sales of apparel. In the spring. the higher the temperature was, the higher the sales of women's wear and golf wear were, but the lower the sales of children's wear, sports wear and inner wear were. In the summer, The higher the amount of rainfall was, the lower the sales of all the apparel classification were. The higher the temperature was, the higher the sales of sports wear were. In the fall, the lower the temperature was, the higher the sales of all the apparel classification except snorts wear were. In the winter, the meteorological factors had little effect on the sales of women's wear, men's wear and children's wear. The higher the temperature was, the higher the sales of golf wear were. The lower the temperature was, the higher the sales of sports wear were.

Seasonal characteristics of thermal and chemical stratification in Lake Paldang (팔당호의 계절별 열적 및 화학적 층화 특성)

  • Son, Ju Yeon;Park, Jin Rak;Noh, Hye Ran;Yu, Soon Ju;Im, Jong Kwon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • The purpose of this study was to investigate the thermal and chemical stratification in Lake Paldang 2013-2018 weekly using Schmidt's stability index (SSI) and the index of chemical stratification (IC-i). The annual average for SSI was 19.1 g cm/㎠ with the maximum value of 45.3 g cm/㎠ in the summer and the minimum value of 4.8 g cm/㎠ in fall-winter showing seasonal differences as well as increased vertical mixing in the summer. The lake stability increased higher in 2016 as compared with the other period. The most influential factors of thermal stratification were temperature and heavy rainfall. Especially, high water temperature and a prolonged residence duration caused by reduced rainfall and inflows could result in an increase of the stratification period. While decreasing inflow and outflow at the end of the rainfall, the thermal stratification was restrengthened within 7-14 days, and then stabilized rapidly before the rainfall. IC-DO increased with high air temperature in the spring and fall-winter. However increasing sunshine duration and residence time and decreasing rate of outflow caused an increase of IC-DO in the summer. Rainfall (less than 800 mm/year) and discharge (less than 200 CMS) significantly declined in 2015 resulting in IC-DO (0.77) increased more than three times over the other years and bottom water hypoxia occurred. The SSI and IC-i used in this study could be applied to other lakes to understand changes in stratification and mixing dynamics.

Precipitation Change in Korea due to Atmospheric $ Increase

  • Oh, Jai-Ho;Hong, Sung-Gil
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.87-106
    • /
    • 1996
  • A precipitation change scenario in Korea due to atmospheric $ doubling has been provided with a mixed method (Rebinson and Finkelstein, 1991) based on the simulated precipitation data by three GCM(CCC, UI, and GFDL GCM) experiments. Through the analysis the precipitation change by atmospheric $ doubing can be summarized as follows : Korea may have more precipitation as much as 25mm/yr during spring season and more less 50 mm/yr during summer and autumn, respectively. In the contrary Korea may have less rainfall as much as 13 mm/yr during winter. In terms of percentage with respect to current climatological value of precipitation Korea may have more rain as much as 10%, 13% and 24%, respectively, for spring, summer and autumn than current climate. However, Korea may have less precipitation during winter than current climatological average.

  • PDF

Safety Evaluation of Net-type Debris Flow Protection System Using Numerical Analysis (수치해석을 이용한 네트형 토석류 방호시스템의 안전성 평가)

  • Lee, Eung-Beom;Lim, Hyun-Taek;Whang, Dae-Won;Lim, Chang-Su;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.157-168
    • /
    • 2018
  • Recently, the occurrence of typhoons and heavy rainfall is increasing due to climate change. This causes increase in possibility of landslide damages in rural areas. However, in reality, the precise engineering stability assessment studies are still insufficient. Therefore, in order to reduce the landslide damages and effectively manage mountainous areas, the development of disaster prevention techniques is needed. In this study, to analyze the shock absorbing effect of the buffer-spring during application of dynamic impact load in the debris flow protection system, numerical analysis is carried out for each free field of the buffer-spring and the load sharing ratio of the buffer-spring is also examined. In addition, the field applicability is verified by comparison of the tensile strength of the conventional buffer-spring and the wedge type buffer-spring on various magnitudes of dynamic impact load. As a result of the study, it is found that the net-type debris protection system is effective to mitigate loss of properties and human lifes during landslide.