• Title/Summary/Keyword: Spring load

Search Result 571, Processing Time 0.041 seconds

A Study on the Fuel Assembly Stress Analysis for Seismic and Blowdown Events (지진 및 냉각재상실사고시의 핵연료집합체 응력해석에 관한 연구)

  • Kim, Il-Kon
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.552-560
    • /
    • 1993
  • In this study, the detailed fuel assembly stress analysis model to evaluate the structural integrity for seismic and blowdown accidents is developed. For this purpose, as the first step, the program MAIN which identifies the worst bending mode shaped fuel assembly(FA) in core model is made. And the finite element model for stress calculation of FA components is developed. In the model the fuel rods (FRs) and the guide thimbles are modelled by 3-dimensional beam elements, and the spacer grid spring is modelled by a linear and relational spring. The constraints come from the results of the program MAIN. The stress analysis of the 16$\times$16 type FA under arbitary seismic load is performed using the developed program and modelling technique as an example. The developed stress model is helpful for the stress calculation of FA components for seismic and blowdown loads to evaluate the structural integrity of FA.

  • PDF

Design of Distributed Hadoop Full Stack Platform for Big Data Collection and Processing (빅데이터 수집 처리를 위한 분산 하둡 풀스택 플랫폼의 설계)

  • Lee, Myeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.45-51
    • /
    • 2021
  • In accordance with the rapid non-face-to-face environment and mobile first strategy, the explosive increase and creation of many structured/unstructured data every year demands new decision making and services using big data in all fields. However, there have been few reference cases of using the Hadoop Ecosystem, which uses the rapidly increasing big data every year to collect and load big data into a standard platform that can be applied in a practical environment, and then store and process well-established big data in a relational database. Therefore, in this study, after collecting unstructured data searched by keywords from social network services based on Hadoop 2.0 through three virtual machine servers in the Spring Framework environment, the collected unstructured data is loaded into Hadoop Distributed File System and HBase based on the loaded unstructured data, it was designed and implemented to store standardized big data in a relational database using a morpheme analyzer. In the future, research on clustering and classification and analysis using machine learning using Hive or Mahout for deep data analysis should be continued.

A Scalability Study with Nginx for Drools-Based Oriental Medical Expert System (Drools 기반 한방전문가 시스템의 Nginx를 이용한 확장성 연구)

  • Jang, Wonyong;Kim, Taewoo;Cha, Eunchae;Choi, Eunmi
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.12
    • /
    • pp.497-504
    • /
    • 2018
  • This paper studies about the Oriental Medical Expert System, based on Open Source Drools for rule engine processing, which contains scalability, availability, and modifiability. The system is developed with the Spring MVC framework and Ajax for stable services of the Web-based Medical Expert System. The diagnosis and treatment process of this Medical Expert system provides a service that provides the general users to accesses the web with a series of questionnaires. In order to compensate for the asynchronous communication between clients and services, and also for the complicated JDBC weaknesses, we applied the data handling in JSON to reduce the servers' loads, and also the Mybatis framework to improve the performance of the RDBMS, respectively. In addition, as the number of users increases to cope with the maximum available services of the web-based system, the load balancing structure using Nginx has been developed to solve the server traffic problems and the service availability has been increased. The experimental results show the stable services by approving the scalability test.

Design of a Novel 3D Printed Harmonic Drive and Analysis of its Application (3D 프린팅 기법을 이용한 하모닉 드라이브(Harmonic Drive) 설계 및 응용 분석)

  • Kim, Sang-Hyun;Byeon, Chang-Sup;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.27-31
    • /
    • 2022
  • Harmonic drives have attracted increasing attention with the development of materials, parts, and related equipment. Harmonic drives exhibit high deceleration, high accuracy, and light weight. The stiffness of flexible splines according to the radial load is studied using a commercial FEM program to design the structure of the flexible spline and finite element to improve the weight and price competitiveness of harmonic drives. In addition, several studies have measured and compared friction coefficients based on 3D printed tread patterns. However, owing to the characteristics of plastic materials, a decrease in stiffness in the radial direction is inevitable. To prevent a decrease in stiffness in the radial direction, we designed and manufactured flex splines with a wrinkle shape. Through structural analysis, the reaction force and stiffness in the radial direction were determined. In addition, the maximum angle of the mound was derived by theoretical calculations, and the performance of the harmonic drive was compared with the results obtained in the mound experiment. Structural analysis shows that the shape of wrinkles decreased the stress and reaction force and increased the safety factor in comparison with that of the circular shape. During performance verification through continuous experiments, the developed harmonic drive showed continuous performance similar to that of an actual tank model. It is expected that the flex spline with a compliant spring and wrinkle shape will prevent a decrease in the radial stiffness.

Assessment of Lateral Behavior of Steel-concrete Composite Piles Using Full-scale Model Tests (실대형 모형 실험을 이용한 강관합성 말뚝의 수평 거동 특성 평가)

  • Kwon, Hyungmin;Lee, Juhyung;Park, Jaehyu;Chung, Moonkyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.199-206
    • /
    • 2009
  • This paper presents full scale model tests on the various types of model piles carried out to estimate the behavior of laterally loaded steel-concrete composite piles. Subgrade-reaction spring system was developed to simulate the reaction of ground in laboratory condition. In addition, lateral behavior of piles under working load condition was estimated using composite loading system, which is available for independent loading in vertical and horizontal direction. Steel-concrete composite piles showed higher efficiency in lateral resistance rather than drilled shaft made of reinforced concrete. The lateral resistance of composite pile was larger than the summation of steel pile and concrete pile due to the composite effect by steel casing. The effect of shear key or strength of concrete on the behavior of composite pile was examined. The substitution of reinforcing bar by steel casing was also investigated.

Restrained Stroke Active Tuned Mass Damper (제한진폭 능동형 질량동조감쇠장치)

  • Kwon, Jang-Sub;Chang, Sung-Pil;Yoo, Hong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.9-22
    • /
    • 2005
  • The allowed operation space for the mass damper in an active tuned mass damper (ATMD) system is limited for most civil structures. In this study, a restrained stroke active tuned mass damper (RS-ATMD) system with a end-spring and a holder that reduces the stroke of the mass damper with maintaining the control effect durably is proposed. This new control system functions as a conventional ATMD within the predetermined stroke limitation under small excitation and as an RS-ATMD beyond that limitation under large excitation. A new control algorithm considering such an operation principle of the RS-ATMD are also provided. Parameteric study for the various design factors of the RS-ATMD is conducted and the control effectiveness are investigated in comparison with the ATMD. Exposed to sinusoidal or impact load, the RS-ATMD system shows the considerable reduction of the maximum stroke of the mass damper with the slight diminution in the control effectiveness. Excited by random load, it also shows the considerable reduction of the maximum stroke of the mass damper not allowing the diminution in the control effectiveness.

A Nonlinear Truss Finite Element Model for Structures with Negative Poisson Effect Accompanied by Tensile Buckling (인장 좌굴 현상을 수반하는 음의 포아송 효과를 가지는 구조물 해석을 위한 비선형 트러스 유한요소 모델)

  • Tae-Wan Kim;Jun-Sik Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • In this study, a nonlinear truss finite element is developed to analyze structures with negative Poisson effect-induced tensile buckling. In general, the well-known buckling phenomenon is a stability problem under a compressive load, whereas tensile buckling occurs because of local compression caused by tension. It is not as well-known as classical buckling because it is a recent study. The mechanism of tensile buckling can be briefly explained from an energy standpoint. The nonlinear truss finite element with a torsional spring is formulated because the finite element has not been reported in the literature yet. The post-buckling analysis is then performed using the generalized displacement control method, which reveals that the torsional spring plays an important role in tensile buckling. Structures that mimic a negative Poisson effect can be constructed using such post-buckling behaviors, and one of the possible applications is a mechanical switch. The results obtained are compared to those of analytical solutions and commercial finite element analysis to assess the validity of the proposed finite element model. The numerical results show that the developed finite element model could be a viable option for the basic design of nonlinear structures with a negative Poisson effect.

Lake's Function on Control of Refractory Dissolved Organic Matter caused by Upstream Rivers to Andong Lake and JinYang Lake (안동호와 진양호의 상류하천발생 난분해성유기물질 제어에 대한 호소의 기능)

  • Choi, Byoung-Woo;Kang, Mee-A;Sohn, Ho-Yong
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.343-353
    • /
    • 2011
  • Variations of load in both DOM and RDOM of inflowing rivers to lakes were in the range of 5.01-7.29(${\times}10^2$ kg/day) for AD lake and 1.23-3.75(${\times}10^3$ kg/day) for JY lake during the research period excluding the period directly affected by the strong rainy season and the monsoon and typhoon season. We observed a good relationship($R^2$ > 0.8) between SS load and DOM load (including RDOM) in both inflowing rivers to JY lake. Therefore, it was determined that SS would be an alternative parameter with a rapid and energy-efficient method for the analysis of both DOC and RDOC, which require the analytical equipment and a long time period. Both AD lake and JY lake may act as a DOM(including RDOM) source through primary production in the fall season. Because AD lake and JY lake may not act as a DOM buffer zone, both lakes couldn't control the DOM and RDOM in spring before the rainy season. Therefore to improve water quality in downstream rivers is needed to remove pollutants such as DOM and RDOM before inflowing to these lakes in upstream rivers, or to have the unique landscape of wetlands as a buffer zone.

Nonlinear Subgrade Reaction Analysis of the Soil-Pile System for Mooring Dolphin Structures (계류식 돌핀구조물에 대한 지반-말뚝계의 비선형 지반반력 해석)

  • 오세붕;이진학;이상순;김동수;정태영
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.3-16
    • /
    • 1999
  • The objective of BMP( Barge Mounted Plant) project is to construct plants on mooring floating structures at sea. To analyze the pile behavior under mooring dolphins, generally, axial or lateral behavior of soil-pile system is evaluated by using a nonlinear subgrade reaction method which models the pile as a structural element and the soil as series of nonlinear springs along the depth. As a result, load-displacement curves at pile head can be solved by finite difference method and the equivalent stiffness of bottom boundaries of dolphin structure is evaluated. In this study off-shore site investigation was performed on the marine area of Koje Island and axial and lateral load transfer curves of the ground were modeled with depth. The subgrade reaction analysis was performed for piles under axial or lateral loadings, and the required penetration depth and section of the pile were determined. Subsequently, the spring boundaries under the dolphin structure could be modeled from the calculated load-displacement curve and then the dynamic response of the dolphin structure was analyzed reasonably by considering ground conditions. The analysis considering the stiffness of the soil-pile system has resulted in larger displacement amplitudes than those for rigid foundations. Furthermore, moment distributions of the casing were dependent on the soil-pile system so that deformable foundation induces the larger moment of top section of casing and the smaller moment of pile head.

  • PDF

Responses of Young 'Fuyu' Persimmon Trees to Summer Fertilization Rate and Leaf-fruit Ratio

  • Choi, Seong-Tae;Kim, Seong-Cheol;Ahn, Gwang-Hwan;Park, Doo-Sang;Kim, Eun-Seok;Choi, Jae-Hyeok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.577-583
    • /
    • 2016
  • Small-sized persimmons produced by high crop load are better accepted in the export markets. However, maintaining high crop load frequently results in weakness of tree vigor, deterioration of fruit quality, and increase of the risks for alternate bearing. This experiment was conducted to determine the combined effects of fertilization rate and leaf-fruit (L/F) ratio on container-grown 3-year-old 'Fuyu' persimmon trees. Application of 3.6-g N, 2.1-g $P_2O_5$, 2.7-g $K_2O$, 2.7-g CaO, and 0.6-g MgO was for the control fertilization rate (CF) and that of a 3-fold CF was for the high fertilization rate (HF). Commercial fertilizers were surface-applied to a container on July 6, July 17, and August 10 in three equal aliquots. Single tree for each fertilization rate was assigned for 12 L/F ratios (5, 6.3, 7.7, 9, 10.4, 13, 15.5, 18, 21, 24, 27, and 33) mostly by fruit thinning or rarely by defoliation on July 1. HF did not affect the yield, weight and soluble solids of the fruits but decreased skin color. As L/F ratio increased, yield decreased but average weight, skin color, and soluble solids of fruits increased. With HF, N and K concentrations in leaves, fruits, and shoots increased to some extent but soluble sugars in dormant shoots decreased. Many shoots were cold-injured with low L/F ratio especially at the HF. HF did not increase number of flower buds the next spring either on a shoot or on a tree basis but increased shoot length, compared with the CF. Increasing L/F ratio markedly increased number of flower buds and shoot growth the following year at both fertilization rates. Therefore, an appropriate combination of fertilization rate and L/F ratio should be necessary to maintain stable fruit production and tree vigor at high crop load.