• 제목/요약/키워드: Spring Deflection

검색결과 137건 처리시간 0.024초

변형률 데이터를 이용한 철골모멘트골조의 횡응답 예측을 위한 해석적 연구 (A Numerical Study to Estimate the Lateral Responses of Steel Moment Frames Using Strain Data)

  • 김시준;최세운
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권6호
    • /
    • pp.113-119
    • /
    • 2016
  • 본 연구는 철골모멘트골조를 대상으로 변형률 기반 횡응답 예측 기법 제시한다. 기둥의 변형률 데이터를 이용하여 건물레벨의 횡응답을 예측한다. 변형률 데이터는 한 개의 기둥 당 총 4개의 변형률 센서가 설치된다고 가정하여 기둥의 양 단부의 변형률 응답 값을 이용한다. 양단부의 변형률 값을 통해 단부의 휨모멘트를 계산하고 이를 처짐각법에 적용하면 건물레벨의 횡응답을 예측할 수 있다. 또한 한 개층에 설치된 가속도계의 응답을 이용하여 지점에 위치한 회전스프링의 강성값을 예측하였다. 제시한 기법은 5층 1경간 철골모멘트골조 예제에 적용하여 그것의 신뢰성를 검증하였다. 횡변위 및 횡가속도에 대한 예측 응답이 비교값과 일치하는 결과를 얻었으며, 손상 여부 및 위치를 파악하는데 효과적임을 확인하였다. 반면 고유주기와 같은 동특성은 구조물의 손상을 파악하는데 한계가 있음을 확인하였다.

족부보장구(A.F.O.) 판스프링용 Glass/Epoxy와 Aramid/Epoxy의 충격속도 변화에 따른 손상 거동 (The Damage Behavior of Glass/Epoxy and Aramid/Epoxy in Leaf Spring of Ankle Foot Orthosis (A.F.O) due to the Various Impact Velocities)

  • 송삼홍;오동준;정훈희;김철웅
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1526-1533
    • /
    • 2004
  • The needs of walking assistant device such as the Ankle Foot Orthosis (A.F.O) are getting greater than before. However, most of the A.F.O are generally imported rather than domestic manufacturing. The major reason of high import reliability is the rack of impact properties of domestic commercial products. Therefore, this research is going to focus on the evaluation of impact properties of the A.F.O which has the high import reliability. Unfortunately, these kinds of researches are not performed sufficiently. This research is going to evaluate impact energy behavior in composite materials such as the glass/epoxy (S-glass, [0/90]sub 2S/) and the aramid/epoxy (Kevlar-29, woven type, 8 ply) of ankle foot orthosis. The approach methods were as follows. 1) The history of impact load and impact energy due to the various velocities. 2) Relationship between the deflection and damage shape according to the impact velocities. 3) The behavior of absorbed energy and residual strength rate due to the various impact velocities.

승객 상해의 감소를 위한 승용차 조향주의 최적설계 (An Optimum Design of a Steering Column to Minimize the Injury of a Passenger)

  • 박영선;이주영;박경진
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.33-44
    • /
    • 1995
  • As the occupant safety receives more attention from automobile industries. protection systems have been developed quite well. Developed protection systems must be evaluated through real tests in crash environment Since the real tests are extremely expensive. computer simulations are replaced for some prediction of the real test In the computer simulation. it is very crucial to express the real environment precisely in the modeling precess. The energy absorbing(EA) steering system has a very important rote in vehicle crashes because the occupant can hit the system directly. In this study. the EA steering system is modeled precisely. analyzed for the safely and designed by an optimization technology. First. the EA steering system is disassembled by parts and modeled by segments and joints. The segments are modeled by rigid bodies in motion and they have resistances in contact. Spring-damper elements and force-deflection curves are utilized to represent the joints. The body block test is cal lied out to validate. the modeling. When the test results are not enough for the detailed modeling. the differences between tests and simulations are minimized to calculate unknown parameters using optimization. The established model is applied to a crash simulation of a full-car model and tuned again. After the modeling is finished. components of the steering system are designed by an optimization algorithm. In the optimization process. the compound injury of a driver is defined and minimized to determine the chracteristics of the components. The second. order approximation algorithm has been adopted for the optimization.

  • PDF

Bending of a rectangular plate resting on a fractionalized Zener foundation

  • Zhang, Cheng-Cheng;Zhu, Hong-Hu;Shi, Bin;Mei, Guo-Xiong
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1069-1084
    • /
    • 2014
  • The long-term performance of plates resting on viscoelastic foundations is a major concern in the analysis of soil-structure interaction. As a powerful mathematical tool, fractional calculus may address these plate-on-foundation problems. In this paper, a fractionalized Zener model is proposed to study the time-dependent behavior of a uniformly loaded rectangular thin foundation plate. By use of the viscoelastic-elastic correspondence principle and the Laplace transforms, the analytical solutions were obtained in terms of the Mittag-Leffler function. Through the analysis of a numerical example, the calculated plate deflection, bending moment and foundation reaction were compared to those from ideal elastic and standard viscoelastic models. It is found that the upper and lower bound solutions of the plate response estimated by the proposed model can be determined using the elastic model. Based on a parametric study, the impacts of model parameters on the long-term performance of a foundation plate were systematically investigated. The results show that the two spring stiffnesses govern the upper and lower bound solutions of the plate response. By varying the values of the fractional differential order and the coefficient of viscosity, the time-dependent behavior of a foundation plate can be accurately captured. The fractional differential order seems to be dependent on the mechanical properties of the ground soil. A sandy foundation will have a small fractional differential order while in order to simulate the creeping of clay foundation, a larger fractional differential order value is needed. The fractionalized Zener model is capable of accounting for the primary and secondary consolidation processes of the foundation soil and can be used to predict the plate performance over many decades of time.

IGRINS : Mirror Mounts Optomechanical Design

  • ;박찬;이성호;;이한신;오희영;정화경;육인수;;김강민;천무영
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.155.1-155.1
    • /
    • 2011
  • The Korea Astronomy and Space Science Institute (KASI) and the Department of Astronomy at the University of Texas at Austin (UT) are developing a near infrared wide-band high resolution spectrograph, IGRINS (Immersion Grating Infrared Spectrograph). The white-pupil design of the instrument optics uses 7 cryogenic mirrors including 3 aspherical off-axis collimators and 4 flat fold mirrors. Two of the 3 collimators are H- and K-band pupil transfer mirrors and they are designed as compensators for the system alignment in each channel. Therefore, their mount design will be one of the most sensitive parts in the IGRINS optomechanical system. The other flat fold mirrors are designed within the limited area. Each of those includes the features of 3 axial hard points and 2 radial hard points with one spring plunger in order for the proper deflection of the mirror. The design work will include the computer-aided 3D modeling and finite element analysis (FEA) to optimize the structural stability and the thermal behavior of the mount models. The mount body will also include a tip-tilt and translation adjustment mechanism to be used as the alignment compensators.

  • PDF

Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation

  • Chaabane, Lynda Amel;Bourada, Fouad;Sekkal, Mohamed;Zerouati, Sara;Zaoui, Fatima Zohra;Tounsi, Abdeldjebbar;Derras, Abdelhak;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.185-196
    • /
    • 2019
  • In this investigation, study of the static and dynamic behaviors of functionally graded beams (FGB) is presented using a hyperbolic shear deformation theory (HySDT). The simply supported FG-beam is resting on the elastic foundation (Winkler-Pasternak types). The properties of the FG-beam vary according to exponential (E-FGB) and power-law (P-FGB) distributions. The governing equations are determined via Hamilton's principle and solved by using Navier's method. To show the accuracy of this model (HySDT), the current results are compared with those available in the literature. Also, various numerical results are discussed to show the influence of the variation of the volume fraction of the materials, the power index, the slenderness ratio and the effect of Winkler spring constant on the fundamental frequency, center deflection, normal and shear stress of FG-beam.

100 kJ 낙석에너지 흡수가 가능한 유연성 와이어로프 낙석방지울타리 성능검증 (Performance Assessment of Flexible Wire Rope Rockfall Protection Fence for 100 kJ Energy Absorption)

  • 손정익;신용철;김정우;문형범;이경수
    • 지질공학
    • /
    • 제32권4호
    • /
    • pp.499-511
    • /
    • 2022
  • 본 연구에서는 ETAG 027에서 제시하는 수직낙하실험법을 이용하여 100 kJ 낙석에너지를 포획할 수 있는 유연성 와이어로 낙석방지울타리에 대한 성능검증을 실시하였다. 유연성 와이어로프는 스프링과 와이어로프로 구성된 탄성력 증진 로프로서 와이어로프보다 탄성늘음이 향상되어 낙석과 와이어로프와의 접촉시간을 인위적으로 증가시켜 낙석 충격력 경감효과를 유발하고 낙석에너지 흡수효과 또한 향상시켰다. 9.8 kN의 콘크리트 공시체를 낙석방지울타리 상단 10.5 m 높이에서 자유낙하시켜 102.9 kJ의 낙석에너지를 낙석방지울타리에 가한 후 지주거동을 분석한 결과, 지주는 소성비틀림이 발생하였으며 탄성회복 후 최종변형량은 1.15 m로 ETAG 027에서 제시하는 기준인 2.0 m 이하의 결과가 제시되어 유연성 와이어로프 낙석방지울타리는 102.9 kJ의 낙석에너지를 성공적으로 흡수 가능한 것으로 확인되었다.