• 제목/요약/키워드: Spring Coefficient

검색결과 388건 처리시간 0.021초

보조용기의 열전달특성이 공기스프링의 성능에 미치는 영향 (Effectiveness of a Heat Transfer Characteristics of an Auxiliary Chamber for Performance of an Air Spring)

  • 장지성
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.121-127
    • /
    • 2013
  • The air spring is used widely because of the easy change of spring constant, and, a superior vibration and shock insulation performance. Among the apparatus using the merits of that, the air spring connected an auxiliary chamber has been developed and used as a component of suspension system for an automobile and a railroad car. The purpose of this study is to suggest a design method reflecting heat transfer effect for an air spring system connected auxiliary chamber. In order to do so, this study investigates change of reaction force along with variations in heat transfer coefficient, and, analyzes an effectiveness of a heat transfer characteristics of an auxiliary chamber for external force attenuation characteristics and impedance characteristics of an air spring connected an auxiliary chamber.

On the eigenvalues of a uniform rectangular plate carrying any number of spring-damper-mass systems

  • Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • 제16권3호
    • /
    • pp.341-360
    • /
    • 2003
  • The goal of this paper is to determine the eigenvalues of a uniform rectangular plate carrying any number of spring-damper-mass systems using an analytical-and-numerical-combined method (ANCM). To this end, a technique was presented to replace each "spring-damper-mass" system by a massless equivalent "spring-damper" system with the specified effective spring constant and effective damping coefficient. Then, the mode superposition approach was used to transform the partial differential equation of motion into the matrix equation, and the eigenvalues of the complete system were determined from the associated characteristic equation. To verify the reliability of the presented theory, all numerical results obtained from the ANCM were compared with those obtained from the conventional finite element method (FEM) and good agreement was achieved. Since the order of the property matrices for the equation of motion obtained from the ANCM is much lower than that obtained from the FEM, the CPU time required by the ANCM is much less than that by the FEM.

STUDY ON RIDE QUALITY OF A HEAVY-DUTY OFF-ROAD VEHICLE WITH A NONLINEAR HYDROPNEUMATIC SPRING

  • SUN T.;YU F.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.483-489
    • /
    • 2005
  • Based on a two-degree of freedom vehicle model, this paper investigates ride comfort for a heavy off-road vehicle mounted a nonlinear hydropneumatic spring, which is influenced by nonlinear stiffness and damping characteristics of the hydropneumatic spring. Especially, the damping force is derived by applying H. Blasius formula in modeling process according to the real physical structure of the hydropneumatic spring, and the established model of nonlinear stiffness characteristics have been validated by experiments. Furthermore, the effects of parameter variations of the hydropneumatic spring, such as initial charge pressure and damping coefficient, on body acceleration, suspension deflection and dynamic tire deflection are also investigated.

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems with the effects of shear deformation and rotary inertia

  • Wang, Jee-Ray;Liu, Tsung-Lung;Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • 제26권1호
    • /
    • pp.1-14
    • /
    • 2007
  • Because of complexity, the literature regarding the free vibration analysis of a Timoshenko beam carrying "multiple" spring-mass systems is rare, particular that regarding the "exact" solutions. As to the "exact" solutions by further considering the joint terms of shear deformation and rotary inertia in the differential equation of motion of a Timoshenko beam carrying multiple concentrated attachments, the information concerned is not found yet. This is the reason why this paper aims at studying the natural frequencies and mode shapes of a uniform Timoshenko beam carrying multiple intermediate spring-mass systems using an exact as well as a numerical assembly method. Since the shear deformation and rotary inertia terms are dependent on the slenderness ratio of the beam, the shear coefficient of the cross-section, the total number of attachments and the support conditions of the beam, the individual and/or combined effects of these factors on the result are investigated in details. Numerical results reveal that the effect of the shear deformation and rotary inertia joint terms on the lowest five natural frequencies of the combined vibrating system is somehow complicated.

보행형 관리기의 엔진 마운트로서 방진고무의 효과와 최적화 설계 (Effectiveness and Optimal Design of Vibration Isolating Rubber As an Engine Mount of Walking-Type Cultivators)

  • 박영준;이윤세;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제29권5호
    • /
    • pp.385-394
    • /
    • 2004
  • The objectives of this study were to investigate the effectiveness of rubber as an engine mount of walking-type cultivators and to determine its optimal spring constant and damping coefficient using a dynamic simulation of the engine mount system. Four different types of rubber mounts were tested to determine their spring constants and damping coefficients, and the best type was selected for the isolation of the engine vibrations transmitted to the handle. The total vibration levels transmitted to the handle when the rubber mounts weren't installed were 17.52 $m/s^2$. The total vibration levels transmitted to the handle when the rubber mounts were installed were 10.69 $m/s^2$ for Stripe 1, 11.33$m/s^2$ for Stripe 2, 10.92$m/s^2$ for Stripe 3 and 14.19$m/s^2$ for Hive, respectively, resulting in an average of $30\%$ reduction when compared with that without the engine mount. A dynamic model of the cultivator's engine-mount system and its simulation program were developed and verified. A method was proposed to determine the optimal spring constant and damping coefficient of the engine-mount system. It was found from the simulation that a spring constant of 4,100 kN/m and the largest damping coefficient were the most effective for the vibration isolation.

철도차량용 고무스프링 특성해석 및 평가 (Finite Element Analysis and Evaluation of Rubber Spring for Railway Vehicle)

  • 우창수;김완두;최병익;박현성;김경식
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.773-778
    • /
    • 2009
  • Chevron rubber springs are used in primary suspensions for rail vehicle. Chevron rubber spring have function which reduce vibration and noise, support load carried in operation of rail vehicle. Prediction and evaluation of characteristics are very important in design procedure to assure the safety and reliability of the rubber spring. The computer simulation using the nonlinear finite element analysis program executed to predict and evaluate the load capacity and stiffness for the chevron spring. The non-linear properties of rubber which are described as strain energy functions are important parameters. These are determined by material tests which are uniaxial tension, equi-biaxial tension and shear test. The appropriate shape and material properties are proposed to adjust the required characteristics of rubber springs in the three modes of flexibility.

Torsion bar spring을 가진 현수장치에 대한 최적조건 해석 (Analysis of optimum condition for the suspension system with torsion bar spring)

  • 손병진;신영철
    • 오토저널
    • /
    • 제4권1호
    • /
    • pp.40-45
    • /
    • 1982
  • The spring constant and damping coefficient are vital factors of ride comfort and driving stability in the vibration of the vehicle which is mainly induced by a variety of the surface irregularity. This paper reviewed the optimum condition of the damping factor derived from the typical model of two mass-two degrees of freedom. Through the evaluation and discussion, it was presented that the spring of the torsion bar type was not effective for the driving stability in the large displacement of the wheel, and also that the damper with progressive performance has to be fundamentally selected to meet the requirement of the driving suability when this kind of spring is used as a suspension system of the vehicle.

  • PDF

LPG기관의 과류밸브가 가속성능에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effects of EFV of LPG Engine on Automobiles Acceration Performance)

  • 장태익;김창헌;김철수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1072-1081
    • /
    • 2004
  • This paper is to investigate on the effects of the hole size of spring type EFV(excessive flow valve) for automobiles The analytical and experimental methods were employed to measure the discharge coefficient. choked flowrate and Pressure wave in a bombe, line and vaporizor The size of EFV was determined to meet the legally permitted limits with the capacity of engine displacement up to 2000cc, according to the obtained discharge coefficient. The Purpose of this paper is 1) to find causes of bad acceration performance in LPG engines 2) to find optimal design determination of spring coefficient and orifice hole size of excessive flow valve in LPG engine 3) to find pressure wave of bombe, line and vaporizer through expeimental verification. Experimental results indicated that increase of orifice size 0.5mm to 1mm be caused to increase discharge coefficient, and choked flow rate and decrease operation range of difference pressure wave.

열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구 (A Study on Determination of the Minimum Vertical Spring Stiffness of Track Pads Considering Running Safety)

  • 김정일;양신추;김연태
    • 대한토목학회논문집
    • /
    • 제26권2D호
    • /
    • pp.299-309
    • /
    • 2006
  • 철도의 고속화와 관련하여 궤도와 구조물의 진동 및 열차소음 등에 대한 대처가 중대한 과제가 되고 있다. 이에 대한 대책으로 궤도패드에 대한 저 탄성화를 제안하여 궤도시스템의 저 탄성화를 추구하고 있지만 곡선부 선로에서 열차의 주행안전을 저해하는 횡압에 의한 레일의 회전이 문제가 되고 있다. 따라서 궤도의 저 탄성화를 위해서는 열차의 주행안전성을 만족하는 궤도패드의 최소 수직 스프링계수의 결정이 매우 중요하다. 이러한 경향에 따라서 본 논문에서는 궤도패드의 최소 수직 스프링계수 결정을 위해 기존의 레일 회전에 관한 이론해와 궤도의 3차원 비선형 유한요소모델간의 결과를 비교 검토하여 열차의 주행안전성을 만족할 수 있도록 하였다. 해석 하중은 차량조건과 궤도조건을 고려한 윤중 횡압 추정식을 구성하여 안전측으로 산정한 하중과 일본의 신간선 하중을 비교 검토하여 궤도 모델에 적용하였다. 구조해석 결과 레일의 회전은 횡압/윤중비와 패드의 강성에 따라서 두 가지 구조해석 모델간 차이가 변화함을 확인하였고, 그 결과 중에서 안전측으로 패드의 최소 강성을 결정하였다.