• Title/Summary/Keyword: Spraying time

Search Result 235, Processing Time 0.026 seconds

A Study on the Optimization of Curing Technology for Improving Properties of Concrete Pavement (콘크리트 포장의 내구성 향상을 위한 양생제 시공기술 최적화 연구)

  • Park, KwonJea;Ryu, SungWoo;Kim, HyungBae;Joo, YoungMin;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.11-20
    • /
    • 2013
  • PURPOSES : This study is to suggest time to spray curing compound, the amount of curing compound, and the number of times to spray curing compound based on indoor tests. METHODS : Based on the literature review, two methods are used in this study, One is test for water retention of concrete curing material and the other is test for abrasion resistance of concrete surfaces by the rotating-cutter method. Through those methods, curing compound was evaluated. RESULTS : The result of the laboratory experiment for time to spray curing compound indicates that 30 minutes after placing concrete is optimal. For the amount of curing compound, $0.5{\ell}/m^2$ is the minimum quantity for both concretes. Through test of the number of times to spray curing compound, method to spray the whole amount of curing compound in twice is more efficient than it to spray the whole amount at a time. Also, method of separately 30-50 minutes spray is better than method of separately 10-30 minutes spray. CONCLUSIONS : From the testing results, it can be proposed that optimum time to curing compound is $30{\pm}15$ minutes, $0.5{\ell}/m^2$ is efficient for spraying the whole amount of curing compound at a time, and $0.4{\ell}/m^2$ is the best for spraying the whole amount of curing compound in twice, which sprays it in 20 minutes after 30 minutes from placing concrete.

A Study on the Health Effects of Pesticide Exposure among Farmers (농약살포 농민의 농약노출로 인한 건강피해에 관한 연구)

  • Lee, Kyoung-Mu;Min, Sun-Young;Chung, Moon-Ho
    • Journal of agricultural medicine and community health
    • /
    • v.25 no.2
    • /
    • pp.245-263
    • /
    • 2000
  • This study was conducted to provide the basic data about the health effects of pesticide exposure among farmers for agricultural health study. We analyzed 412 self-administered questionnaires collected from the male farmers who spray pesticides in Kyoung-ju area, Korea. Survey questions were about chronic symptoms, acute symptoms while pesticide spraying, pesticide intoxication accident, safety rules, protective equipments etc. The correlations among the variables related to pesticide exposure and the factors in acute pesticide poisoning and chronic symptoms of farmers were also analyzed. For chronic symptoms, the prevalence of 'tiredness and languor', 'lumbago', 'nocturia', 'shoulder pain', 'numbness', and, for acute symptoms while pesticide spraying, the experience rate of 'itching sense of skin', 'dizziness/headache', 'fatigue', 'eye glaring' were high compared with other symptoms. For 'experience of intoxication accident by pesticide in family', 7.1% of the subjects experienced the accident and the causes were pesticide spraying, food contamination by pesticide, suicide etc. Among safety rules, 'take a bath after spraying', 'change clothes after spraying' were kept relatively well, and, for protective equipments, hat, boots, mask, gloves, protective clothes(lower) were put on relatively well. The factors associated with acute pesticide poisoning were the extent of keeping safety rules, spraying time, orchard cultivation, agricultural area and spraying days per year etc. And the factors associated with chronic symptoms were acute symptoms while pesticide spraying, agricultural area, farming career, extent of keeping safety rules, extent of agricultural work and the pesticide exposure index etc. From these results, it is suggested that to reduce the health effects by pesticide exposure among farmers, the education to promote to keep safety rules and wear protective equipments, and information services should be recommended. And further studies on the long term health effects of pesticide exposure among farmers are required.

  • PDF

The Application of Surfactants to the Suppression of Fugitive Dust Generated from the Scrap Metal Loading Field in Inchon Port and Preliminary Evaluation on Their Wetting Capability (인천항 고철 하역 작업시 발생하는 비산분진 억제를 위한 계면활성제의 적용 및 기초 성능 평가)

  • Lee, Bo-Young;Yoo, Yong-Ho;Jung, Yong-Won;Kim, Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.85-96
    • /
    • 2001
  • The objective of this study is to develop the water spraying which can effectively by applied to the control or suppression of the fugitive dust generated from the scrap metal handling area at the Port of Inchon. As a first step toward this goal, we carried out some preliminary analyses on the chemical composition, physical shape, and particle size distribution of the sample dust. Next, to quantitatively investigate the effect of adding surfactants to the spraying water on the wettability of the sample dust, the Standard Sink Test was carried out for four different surfactants and at six different concentrations using the surfactants considered in this study. Results of from the preliminary analysis indicated that the main chemical component consisting of the sample dust is Goethite(FeO(OH)) and that the particles smaller than 10 ${\mu}{\textrm}{m}$ in geometric diameter occupy about 36% of the sample dust in mass. This result implies that the fugitive dust generated from the scrap metal handling area at the Port of Inchon should affect the environment nearby more than we have expected. This is because of relatively large mass percentage of the small metal particles less than 10${\mu}{\textrm}{m}$ in geometric diameter, what we may call respirable particles. As for the results of the Standard Sink Test, higher surfactant concentration tends to result in the higher wettability of the sample dust for the surfactants considered in this study, which in turn ensures the high particle collection efficiency of the droplets generated from the water spraying system. Based upon this preliminary results, studies to develop more sophisticated scaled model for dynamic test in underway and the effort to find the best surfactants as well as the optimum operating conditions are being made at the same time.

  • PDF

Persistence of Cyanofenphos on Chinese Cabbage (배추중(中) Cyanofenphos의 잔류소장(殘留消長))

  • Lee, Hae-Keun;Park, Young-Sun;Hong, Jong-Uck;Talekar, N.S.
    • Korean Journal of Environmental Agriculture
    • /
    • v.1 no.2
    • /
    • pp.89-92
    • /
    • 1982
  • Persistence of cyanofenphos on Chinese cabbage under the different climate conditions was studied by spraying the insecticide at the rate of 0.5 and 0.75 ㎏ AI/ha at 22 and 36 days after transplanting and monitoring its residues upto 35 days after the final spray. At both spraying rates the degradation patterns of the insecticide, regardless of climate condition, showed similar trends; cyanofenphos residues on Chinese cabbage declined rapidly upto 14 days after the final spray but more slowly thereafter. Half-life for cyanofenphos on Chinese cabbage was $6{\sim}7$ days. The half-life was little affected by the spraying rate and time. Based on the FAO/WHO maximum residue limit of cyanofenphos on common cabbage (2 ppm), it is recommended that the pre-harvest intervels of the insecticide on Chinese cabbage could be 16 and 19 days for 0.5 and 0.75 ㎏ AI/ha, respectively.

  • PDF

Reduction of Tomato spotted wilt virus on Table Tomatoes in Greenhouses by Soil Fumigation

  • Kim, Jin-Young;Cho, Jeom-Deog;Kim, Jeong-Soo;Hong, Soon-Sung;Lee, Jin-Gu;Choi, Gug-Seoun;Lim, Jae-Wook
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.151-156
    • /
    • 2009
  • Tomato spotted wilt virus (TSWV) has occurred on fields annually disease occurrence rates were 73.3% in 2005, 53.3% in 2006 and 41.6% in 2007 at Anyang area in Gyeonggi Province. Seasonal occurrence pattern of TSWV showed a dramatic increase from 8.7% in late May to 30.1 % in early June in 2007 at Anyang area, coincided with the high population of a thrip, Frank-liniella occidentalis at that time. The rate of viruliferous thrips with TSWV on lettuce and red pepper was 20.2% and 52.1%, respectively, in greenhouses. Dazomat, soil fumigation pesticide, reduced TSWV disease incidence drastically on table tomato as treatment the chemical into the soil with humidity in early spring in 2006 and 2007. Spraying insecticide periodically after treatment with Dazomat was more effective to control TSWV than spraying if on plants or applying into the soil of the insecticide during growing season. Control efficiency through treatments both of the soil fumigation and of spraying insecticide was significantly high with 85.3% in 2006 and 87.8% in 2007. Removing the potential vector from the soil of TSWV infested area can be an effective strategy for reducing TSWV disease.

Physical and Biological Performance Evaluation of Disinfection Systems for Transportation Vehicles against AI Virus

  • Chung, Hansung;Choi, Kwanghoon;Kim, Sungkwan;Kim, Sukwon;Lee, Kyungwoo;Choe, Nonghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.956-966
    • /
    • 2021
  • To prevent the outbreak of infectious diseases that inflict huge economic and social losses, domestic livestock farms and related facilities have introduced automatic and semiautomatic disinfectant solution-spraying systems for vehicles. However, the facility standards and specifications vary by manufacturer, and no scientific performance evaluation has been conducted. The puropose of this study is to develop physical and biological evaluation methods. Physical and biological appraisals were conducted using two types of disinfection facilities (tunnel- and U-type) and two types of vehicles (passenger car, truck). Water-sensitive paper was used to evaluate the physical performance values for the disinfection facilities. In addition, to assess their biological performance, carriers containing low-pathogenic avian influenza virus were attached to vehicles, and the viral reduction was measured after the vehicles moved through the facility. The tunnel-type had rates of coverage in the range of 70-90% for the passenger car and 60-90% for the truck. At least 4-log virus reduction after spraying for 1-5 min was shown for both vehicles. For the U-type facility evaluation, the coverage rates were in the range of 60-90% for the passenger car and at least 90% for the truck. More than 4-log viral reduction was estimated within a spraying time of 5 min. To reduce viruses on the surface of vehicles by at least 4 log within a short period, the disinfectant solution should cover at least 71% of the pathogens. In conclusion, we were able to assess the physical and biological performance criteria for disinfection facilities aboard transportation vehicles.

A Study on the Performance Variation of a Three-Dimensional Hydrofoil Using Jet Flow

  • Eom, Myeong-Jin;Paik, Kwang-Jun;Lee, Ju-Han;Kang, Shin-Min;Kim, Dong-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.24-37
    • /
    • 2021
  • As one of the development directions of high-performance ships to reduce greenhouse gas emissions, there is research on high-performance propellers. However, in the case of conventional screw propellers, as they have been studied for a long time, there is a limit to improving efficiency only by depending on the conventional design and analysis methods. In this study, we tried to solve the problems using the Coanda effect by spraying a jet on the surface of the hydrofoil. The Coanda hydrofoil consists of a tunnel and jet slit to make jet flow. The computation was performed for each tunnel and slit position, and the efficiency according to the geometry of the hydrofoil was analyzed. In addition, a study on the 3D geometry change was conducted to analyze the performance according to the span direction spraying range and hydrofoil shape. As the height of the slit and the diameter of the tip were lower, when the slit is located in the center of the hydrofoil, the lift force increased and the drag force decreased. The increase rate of lift-to-drag ratio was different according to the shape of the hydrofoil, and the efficiency of the spraying condition of 0.1S-0.5S, which had the least effect on the vortex at the tip of the blade, was high for all 3D hydrofoils. When the geometry of the slit was optimized, and also the shape and spray range of the hydrofoil in 3D was considered, the efficiency of the jet sprayed hydrofoil was increased.

A Numerical Analysis of Flow Field in the Silt Nozzle During Cold Spray Coating Process (저온분사 코팅공정에서 초음속 슬릿노즐 사용시 유동장 해석)

  • Park, Hye-Young;Park, Jong-In;Jung, Hun-Je;Jang, Kyoung-Soo;Baek, Ui-Hyun;Han, Jeong-Whan;Kim, Hyung-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.221-230
    • /
    • 2011
  • The cold spray process is an emerging technology that utilizes high velocity metallic particles for surface coating. Metallic powder particles are injected into a converging-diverging de Laval nozzle and accelerated to a high velocity by a supersonic gas flow. The cold spray process normally uses a circular nozzle that has a rather narrow spraying range. To overcome this fault, a slit nozzle was considered in this study. The slit nozzle is anticipated to reduce the coating process time because it has a wider coating width than the circular nozzle. However, the slit nozzle can reduce the coating efficiency because it does not allow as much gas and particle velocity as the circular nozzle. To improve the coating efficiency of a slit nozzle, the shape of the slit nozzle was modified. And the results of gas flow and particle behaviour according to the nozzlers shape were compared by the a numerical analysis. As a results, as Expansion Ratio(ER) of 7.5 was found to be the most optimal condition for enhancing the spraying efficiency when the ER was changed by the variation of nozzle neck and exit size.

Density map estimation based on deep-learning for pest control drone optimization (드론 방제의 최적화를 위한 딥러닝 기반의 밀도맵 추정)

  • Baek-gyeom Seong;Xiongzhe Han;Seung-hwa Yu;Chun-gu Lee;Yeongho Kang;Hyun Ho Woo;Hunsuk Lee;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.53-64
    • /
    • 2024
  • Global population growth has resulted in an increased demand for food production. Simultaneously, aging rural communities have led to a decrease in the workforce, thereby increasing the demand for automation in agriculture. Drones are particularly useful for unmanned pest control fields. However, the current method of uniform spraying leads to environmental damage due to overuse of pesticides and drift by wind. To address this issue, it is necessary to enhance spraying performance through precise performance evaluation. Therefore, as a foundational study aimed at optimizing drone-based pest control technologies, this research evaluated water-sensitive paper (WSP) via density map estimation using convolutional neural networks (CNN) with a encoder-decoder structure. To achieve more accurate estimation, this study implemented multi-task learning, incorporating an additional classifier for image segmentation alongside the density map estimation classifier. The proposed model in this study resulted in a R-squared (R2) of 0.976 for coverage area in the evaluation data set, demonstrating satisfactory performance in evaluating WSP at various density levels. Further research is needed to improve the accuracy of spray result estimations and develop a real-time assessment technology in the field.

Experimental Vrification of the Sray Clculation using the Aricultural Done (농업용 방제드론의 방제면적 산출에 따른 실험적 검증)

  • Wooram Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.569-576
    • /
    • 2023
  • An agricultural drones are gradually increasing in utilization due to economic efficiency, and consist of a main frame in charge of flying spray system in charge of moving pesticide to control targets. Therefore, the environment and characteristics of crops should be considered when controlling pesticides using drones and conditions such as systematic flying altitude of flight, speed, and spray time should be changed accordingly. However, pest control work using agricultural drones has different spray effects depending on level the operation proficiency and spray impact. In addition, there are variations in operating standards and control efficiency for agricultural drones, which hinder the distribution of agricultural control drones in the field of pest control work. Therefore, this study attempts to identify the spraying characteristics of agricultural drones, apply the effective spraying time, interval and experimentally verify the system that can calculation of spray area compared to previous studies. Through this experimental verification, it is intended to apply the optimal control process by minimizing the obstacles to pest control work by applying the operation method and systematic figures to agricultural drones.