• Title/Summary/Keyword: Spray rail

Search Result 125, Processing Time 0.027 seconds

SPRAY CHARACTERISTICS OF DIRECTLY INJECTED LPG

  • Lee, S.W.;Y. Daisho
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.239-245
    • /
    • 2004
  • It has been recognized that alternative fuels such as Liquid Petroleum Gas (LPG) show less polluting combustion characteristics than diesel fuel. Furthermore, engine performance is expected to be nearly equal to that of the diesel engine if direct-injection stratified-charge combustion of the LPG can be adopted in the spark-ignition engine. However, spray characteristics of LPG are quite different from those of diesel fuel. understanding the spray characteristics of LPG and evaporating processes are very important for developing efficient and low emission LPG engines optimized in fuel injection control and combustion processes. In this study, the LPG spray characteristics and evaporating processes were investigated using the Schlieren and Mie scattering optical system and single-hole injectors in a constant volume chamber. The results show that the mixture moves along the impingement wall that reproduced the piston bowl and reaches in ignition spark plug. LPG spray receives more influence of ambient pressure and temperature significantly than that of n-dodecane spray.

Spray Characteristics of Dimethyl Ether(DME) Fuel Compared to Various Diesel Fuels

  • Lee, Seang-Wock;Kim, Duk-Sang;Cho, Yong-Seok
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.65-72
    • /
    • 2008
  • It is recognized that alternative fuel such as dimethyl ether (DME) has better combustion polluting characteristics than diesel fuel, even though the cetane number of DME is almost the same as that of diesel. Characteristics of DME spray were observed experimentally under various ambient conditions using a constant volume chamber and a common-rail injection system. N-dodecane and LPG fuel sprays were also observed under same conditions of DME spray. Using spray images from backlight scattering and Mie scattering, characteristics of fuel sprays such as penetration and spray volume were visualized and quantitatively measured. The measurements showed that the penetration of early period decreased remarkably, because evaporation of alternative fuels became prosperous by the influence of flash boiling phenomenon under the condition of the low temperature and pressure compared with n-dodecane. The penetration of DME and LPG spray received the influence of temperature more largely in comparison with low density, because the specific surface area increased by atomizing in high density.

  • PDF

Spray Penetrations of Dimethyl Ether (DME) and Diesel for the Variation of Injection Rate (분사율 변화에 따른 Dimethyl Ether (DME)와 디젤의 분무도달거리)

  • Choi, Wook;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.16-22
    • /
    • 2004
  • Dimethyl Ether (DME) has been considered as one of the most attractive alternative fuels for a compression ignition engine. The major advantage of DME-fuelled engine is a great potential for soot-free combustion without sacrificing an inherent high thermal efficiency of diesel engine, despite a necessity for modification of the conventional fuel injection system. An experimental study on DME and conventional diesel sprays was conducted by employing a common-rail type fuel injection system with a 5-holes sac type nozzle, including a constant volume vessel pressurized with nitrogen gas. The injection rates of DME and diesel fuel were recorded with the Bosch type injection rate meter. The injection delay of DME was shorter than that of diesel fuel. The measured injection rates of DME and diesel fuel were correlated with spray penetrations. The prediction method of spray penetration was established using the injection rates, which was verified with the Dent's penetration model and found to agree well for DME case.

Effect of Injection Rate and Gas Density on Ambient Gas Entrainment of Non-evaporating Transient Diesel Spray from Common-Rail Injection System (커먼레일시스템의 비증발 디젤 분무에서 분사율과 주변기체의 밀도에 따른 주변기체 유입)

  • Kong, Jang-Sik;Choi, Wook;Bae, Choong-Sik;Kang, Jin-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.19-24
    • /
    • 2004
  • Entrainment of ambient gas into a transient diesel spray is a crucial factor affecting the following preparation of combustible mixture. In this study, the entrainment characteristics of ambient gas for a non-evaporating transient diesel were investigated using a common-rail injection system. The effects of ambient gas density and nozzle hole geometry were assessed with entrainment coefficient. Laser Doppler Velocimetry (LDV) technique was introduced to measure the entrainment speed of ambient gas into a spray. There appeared a region where the entrainment coefficients remained almost constant while injection rates were still changing. The effect of common-rail pressure, which altered the slope of injection rate curve, was hardly noticed at this region. Entrainment coefficient increased with ambient gas density, that is, the effect of ambient gas density was greater than that of turbulent jet whose entrainment coefficient remained constant. The non-dimensional distance was defined to reflect the effect of nozzle hole diameter and ambient gas density together. The mean value of entrainment coefficient was found to increase with non-dimensional distance from the nozzle tip, which would be suggested as the guideline for the nozzle design.

Experimental and Numerical Investigation on DME Spray Characteristics as a Function of Injection Timing in a High Pressure Diesel Injector (고압 분사 인젝터의 분사 시기에 따른 DME 분무특성에 관한 실험 및 해석적 연구)

  • Kim, Hyung-Jun;Park, Su-Han;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.109-116
    • /
    • 2009
  • The purpose of this study is the experimental and numerical investigation on the DME spray characteristics in the combustion chamber according to the injection timing in a common-rail injection system. The visualization system consisted of the high speed camera with metal halide lamp was used for analyzing the spray characteristics such as spray development processes and the spray tip penetration in the free and in-cylinder spray under various ambient pressure. In order to observe the spray characteristics as a function of injection timing, the piston head shape of re-entrant type was created and the fuel injected into the chamber according to various distance between nozzle tip and piston wall in consideration of injection timing. Also, the spray and evaporation characteristics in the cylinder was calculated by using KlVA-3V code for simulating spray development process and spray tip penetration under real engine conditions. It was revealed that the high ambient pressure of 3 MPa was led to delay the spray development and evaporation of DME spray. In addition, injected sprays after BTDC 20 degrees entered the bowl region and the spray at the BTDC 30 degrees was divided into two regions. In the calculated results, the liquefied spray tip penetration and fuel evaporation were shorter and more increased as the injection timing was retarded, respectively.

  • PDF

Combustion Characteristics of Common Rail System by Using a Heavy Duty Transparent Engine (Common Rail을 이용한 대형 디젤 가시화엔진에서의 연소특성)

  • Kim, Y.M.;Lee, J.H.;Kim, S.H.;Lee, W.G.;Hong, C.H.;Choi, B.C.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.896-902
    • /
    • 2001
  • To meet strict emission regulation while improving engine performances, common rail injection system which is suitable for electronic control, and capable of controlling injection quantity, timing, rate and pressure individually as well as realizing high pressure has been developed. At present study, a 8L DI diesel engine was converted to a single-cylinder experimental engine allowing optical access through an extended piston and a prototype of common rail injector in progress was applied to the engine. The combustion characteristics of the engine were analysed by using direct images and characteristics of the injector were analysed. We can not say that the results are always the same to general common rail injection system but that they are just characteristics of specific prototype injector.

  • PDF

An Experimental Study of Spray Behaviors of Biodiesel blended fuels in a Common Rail Injection System (커먼레일 분사시스템에서 바이오디젤 혼합유의 분무 거동에 관한 실험적 연구)

  • Choi, S.H.;Oh, Y.T.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.14-18
    • /
    • 2005
  • In this study, the spray characteristics of blended fuels with biodiesel were investigated. The experiments were performed for the effect of mixing ratio and injection pressures on the spray behavior. Conventional diesel fuel and biodiesel fuel and blended fuels were used as test fuels. Through the spray visualization system, composed of a Halogen lamp and High speed camera. The process of spray injection was visualized. Fuel containing biodiesel has different spray pattern on account of the high viscosity and large surface tension. Through this experimental result, we found that, after solenoid driving pulse generates, the increase of injection pressure enables delay time to get shorter, but the increase of mixing ratio makes delay time lengthen.

  • PDF

Experimental Study of the Effects of Nozzle Hole Geometry for di Diesel Engine (디젤엔진에서 노즐 홀 형상효과의 실험적 연구)

  • Ku, Kun-Woo;Lee, Young-Jin;Kim, In-Su;Lee, Choong-Won
    • Journal of ILASS-Korea
    • /
    • v.12 no.3
    • /
    • pp.154-159
    • /
    • 2007
  • Spray tip penetration and spray angle for one main injection were measured at the atmospheric condition with the fuel injection pressure of 270 bar and 540 bar. It investigates an effect of different nozzle hole geometry of conventional cylindrical one and those of elliptical ones. Injection period represented by injector pulse drive was fixed at 1ms. From the result of this study, it is shown that spray tip penetration becomes shorter and spray angle becomes wider with the elliptical nozzle hole geometry due to fast break-up of a fuel liquid column.

  • PDF

Spray Characteristics of Solenoid-driven and Piezo-driven Type Injectors for the Clean Diesel Engine Application (클린 디젤엔진 적용을 위한 솔레노이드 및 피에조 인젝터의 분무특성)

  • Chon, Mun Soo
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.158-163
    • /
    • 2012
  • This paper presents spray characteristics of piezo-driven type common-rail injector and comparisons to those of solenoid-driven type. Experiments were conducted to measure spray penetraion and SMD distributions using a spray visualization system and PDPA (phase Doppler particle analyzer) system. Injection conditions including injection pressure and energizing durations were varied in order to analyzing effects of injection conditions on spray characteristics. Furthermore, ambient pressures were increased for keeping ambient gas density close to in-cylinder pressure of diesel engine. Results showed that injection delay of piezo-driven type injector was much shorter than those of solenoid driven type and exhibited enhanced atomization performances.

Experimental Study on Mixing Stability and Macroscopic Spray Characteristics of Diesel-gasoline Blended Fuels (디젤-가솔린 혼합연료의 혼합안정성 및 거시적인 분무 특성에 관한 실험적 연구)

  • Park, Sewon;Park, Su Han;Park, Sungwook;Chon, Mun Soo;Lee, Chang Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.121-127
    • /
    • 2012
  • The study is to investigate the mixing stability, fuel properties, and macroscopic spray characteristics of diesel-gasoline blended fuels in a common-rail injection system of a diesel engine. The test fuels were mixed diesel with gasoline fuel, which were based volume fraction of gasoline from 0 to 100% in 20% intervals. In order to analyze the blended effect of gasoline to diesel fuel, the properties of test fuels such as density, viscosity, and surface tension were measured. In addition, the spray behavior characteristics were studied by investigating the spray tip penetration and spray angle using a spray images through a spray visualization system. It was revealed that the density, kinematic viscosity and surface tension of diesel-gasoline blending fuels were decreased with the increase of gasoline fuel. The injection quantity of test fuels were almost similar level at short energizing duration condition. On the other hand, the increase of energizing duration shows the decrease of injection quantity compared to short energizing duration. The test blending fuels have similar growth in Spray tip penetration and Spray cone angle.