• Title/Summary/Keyword: Spray penetration length

Search Result 74, Processing Time 0.032 seconds

Dispersion Characteristics of Sprays under the Condition of Solid Body Rotating Swirl (강체 선회유동 조건에서의 분무 분산 특성에 관한 연구)

  • 이충훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.16-23
    • /
    • 2001
  • Spray dispersion in high pressure diesel engines have been simulated experimentally with a special emphasis on the effect of swirl by using a liquid injection technique. A constant volume chamber was designed to be rotatable in order to generate a continuous swirl and to have the flow field closely resembling a solid body rotation. Emulsified fuel was injected into the chamber and the developing process of fuel sprays was visualized. The effect of swirl on the spray dispersion was quantified by calculating non-dimensionalized dispersion area according to the spray tip penetration length. The results show that the effect of swirl on the spray dispersion is different between short and long spray penetrations. For short range of spray tip penetration, the effect of swirl on spray dispersion is quite small. However, as the spray tip is penetrated into longer distance in spray chamber, the effect of swirl on spray dispersion becomes larger. These results can be used as a basic data for designing combustion chamber and injection system of direct injection diesel engine.

  • PDF

An Investigation on the Spray Characteristics of Diesel-DME Blended Fuel with Variation of Ambient Pressure in the Constant Volume Combustion Chamber (정적연소기에서 분위기 압력에 따른 Diesel-DME 혼합연료의 분무 특성에 관한 연구)

  • Yang, Jiwoong;Lee, Sejun;Lim, Ocktaeck
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.178-184
    • /
    • 2012
  • The aim of this study was to compare the spray characteristics of a typical fuel (100% diesel, DME) and diesel-DME blended fuel in a constant volume combustion chamber (CVCC). The typical fuel (100% diesel, DME) and diesel-DME blended fuel spray characteristics were investigated at various ambient pressures (pressurized nitrogen) and fuel injection pressures using a common rail fuel injection system when the fuel mixture ratio was varied. The fuel injection quantity and spray characteristics were measured including spray shape, penetration length, and spray angle. Common types of injectors were used.

Spray and Combustion Characteristics of a Dump-type Ramjet Combustor

  • Lee, Choong-Won;Moon, Su-Yeon;Sohn, Chang-Hyun;Youn, Hyun-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2019-2026
    • /
    • 2003
  • Spray and combustion characteristics of a dump-type ram-combustor equipped with a V-gutter flame holder were experimentally investigated. Spray penetrations with a change in airstream velocity, air stream temperature, and dynamic pressure ratio were measured to clarify the spray characteristics of a liquid jet injected into the subsonic vitiated airstream, which maintains a highly uniform velocity and temperature. An empirical equation was modified from Inamura's equation to compensate for experimental conditions. In the case of insufficient penetration, the flame in the ram-combustor was unstable, and vice versus in the case of sufficient penetration. When the flame holder was not equipped, the temperature at the center of the ram-combustor had a tendency to decrease due to the low penetration and insufficient mixing. Therefore, the temperature distribution was slanted to the low wall of the ram-combustor. These trends gradually disappeared as the length of the combustor became longer and the flame holder was equipped. Combustion efficiency increased when the length of the combustor was long and the flame holder was equipped. Especially, the effect of the flame holder was more dominant than that of the combustor length in light of combustion efficiency.

Experimental Studies on Atomization Characteristics in Diesel Fuel Spray(I) (디젤분무특성에 관한 실험적 연구(I))

  • 박호준;장영준
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.76-84
    • /
    • 1990
  • To study diesel fuel spray behavior, an experimental study was undertaken to investigate injection characteristics in vary ing back pressure and atomization mechanism in a non-evaporating diesel spray. Generally, injection characteristics is the curve of fuel flow plotted against time. The area under this curve is equal to the total quantity of fuel discharged for one injection. The method that measures rate of injection is long tube-type fuel rate indicator. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking high speed camera by the focused shadow photographs. The results show that, at the start of injection, as the injected fuel rushes into the quiescent atmosphere the spray angle becomes large. Finally the spray stabilizes at a constant cone angle. Spray penetration length increases with the injection pressure.

  • PDF

Analysis of the False Diffusion Effects in Numerical Simulation of Diesel Spray Impinging on Inclined Walls (경사진 벽충돌 디젤 분무에 대한 수치해석에서 오류확산이 미치는 영향)

  • Gwon, H.R.;Lee, S.H.
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2008
  • The false diffusion occurs generally when the flow is oblique to the grid lines and when there is a non-zero gradient of the dependent variable in the direction normal to the flow. This numerical problem can overestimate diffusion terms in the continuous phase, causing the numerical inaccuracy for the simulation of impinging sprays on inclined walls because most of spray calculation uses rectangular grid system. Therefore, the main objective of this article is to investigate numerically the influence of false diffusion on numerical simulation for spray-wall impingement on inclined walls. It is found that unlike the spray impingement normal to the wall, the numerical diffusion exists in the case when diesel sprays impinge on the inclined walls with different angles. The results show that the correction function should be considered for accurate prediction of spray penetration length and more elaborate numerical schemes should be utilized to reduce the false diffusion.

  • PDF

Spray and Combustion Characteristics of n-dodecane in a Constant Volume Combustion Chamber for ECN Research (ECN 연구용 고온 고압 정적 연소실에서의 n-dodecane 분무 및 연소 특성)

  • Kim, Jaeheun;Park, Hyunwook;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.188-196
    • /
    • 2014
  • The spray and combustion characteristics of n-dodecane fuel were investigated in a CVCC (constant volume combustion chamber). The selection of ambient conditions for the spray followed ECN (engine combustion network) guidelines, which simulates the ambient condition of diesel engines at start of fuel injection. ECN is a collaboration network whose main objective is to establish an internet library of well-documented experiments that are appropriate for model validation and the advancement of scientific understanding of combustion at conditions specific to engines. Therefore repeatability of the experiments with high accuracy was important. The ambient temperature was varied from 750 to 930 K while the density was fixed at around $23kg/m^3$. The injection pressure of the fuel was varied from 500 to 1500 bar. The spray was injected in both non-reacting ($O_2$ concentration of 0%) and reacting conditions ($O_2$ concentration of 15%) to examine the spray and the combustion characteristics. Direct imaging with Mie Scattering was used to obtain the liquid penetration length. Shadowgraph was implemented to observe vapor length and lift-off length at non-reacting and reacting conditions, respectively. Pressure data was analyzed to determine the ignition delay with respect to the spray and ambient conditions.

The Effects of Chamber Temperature and Pressure on a GDI Spray Characteristics in a Constant Volume Chamber

  • Oh, Seun-Sung;Kim, Seong-Soo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.186-192
    • /
    • 2014
  • The spray structures under the stratified and homogeneous charge condition of a gasoline direct injection were investigated in a visualized constant volume chamber. The chamber pressure was controlled from 0.1 MPa to 0.9 MPa by the high pressure nitrogen and the chamber temperatures of $25^{\circ}C$, $60^{\circ}C$ and $80^{\circ}C$ were controlled by the band type heater. The fuel, iso-octane was injected by a 6-hole injector with the pressures of 7 MPa and 12 MPa. From the experiments results, it is confirmed that at lower chamber pressure, the penetration length and spray angle are mainly affected by the chamber temperature with the vaporization of the fuel droplets and generated vortices at the end region of the spray. And at higher chamber pressure, the penetration lengths at the end of the injection were about 50~60% of that at lower chamber pressure regardless of the chamber temperature and the effect of fuel injection pressure is larger than that of the chamber temperature which results from larger penetration lengths at higher fuel injection pressure than at lower fuel injection pressure regardless of the chamber temperatures.

An Investigation on the Spray Characteristics of DME Common Rail Fuel Injection System with Variation of Ambient Pressure (분위기 압력변화에 따른 DME 커먼레일 연료 분사 시스템의 분무 특성에 관한 연구)

  • Lee, Se-Jun;Oh, Se-Doo;Jeong, Soo-Jin;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.90-97
    • /
    • 2012
  • It is investigated of the DME spray characteristics about varied ambient pressure and fuel injection pressure using the common rail fuel injection system when the nozzle holes diameter is varied. The common rail fuel injection system and fuel cooling system is used since DME has compressibility and vaporization in atmospheric temperature. The fuel injection quantity and spray characteristics were measured. The spray was analyzed of spray shape, penetration length, and spray angle at the six nozzle holes. The 2 types injector were used, the one was 0.166 mm diameter the other one was 0.250 mm diameter. The ambient pressure which is based on gage pressure was 0 MPa, 2.5 MPa, and 5 MPa. The fuel injection pressure was varied by 5 MPa from 35 MPa to 70 MPa. When using the converted injector, compared to using the common injector, the DME injection quantity was increased 127 % but it didn't have the same heat release. Both of the common and converted injector had symmetric spray shapes. In case of converted injector, there were asymmetrical spray shapes until 1.2 ms, but after 1.2 ms the spray shape was symmetrical. Compared with the common and converted injector, the converted injector had shorter penetration length and wider spray angle than the common injector.

An Investigation on the Spray Characteristics of DME with Variation of Nozzle Holes Diameter using the Common Rail Fuel Injection System (인젝터 노즐 홀 직경의 변화에 따른 DME 커먼레일 연료 분사 시스템의 분무 특성에 관한 연구 II)

  • Lee, Sejun;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • DME spray characteristics were investigated about varied ambient pressure and fuel injection pressure using the DME common rail fuel injection system when the nozzle holes diameter is varied. The common rail fuel injection system with DME cooling system was used since DME has properties of compressibility and vaporization in atmospheric temperature. The fuel injection quantity and spray characteristics were measured. The spray analysis parameters were spray shape, penetration length, and spray angle at six nozzle holes. Three types of injector were used, the nozzle holes diameter were 0.166 mm (Injector 1), 0.250 mm (Injector 2), and 0.250 mm with enlargement of orifice hole from 0.6 mm to 1.0 mm (Injector 3). The fuel injection pressure was varied by 5MPa from 35 to 70MPa when the ambient pressure was varied 0, 2.5, and 5MPa. When using Injector 3 in comparison to the others, the DME injection quantity was increased 1.69 ~ 2.02 times. Through this, it had the similar low heat value with diesel which was injected Injector 1. Among three types of injector, Injector 3 had the fastest development velocity of penetration length. In case of spray angle, Injector 2 had the largest spray angle. Through these results, only the way enlargement the nozzle holes diameter is not the solution of DME low heat value problem.

Numerical Study for Spray Characteristics of Liquid Jet in Cross Flow with Variation of Injection Angle (분사각 변화에 따른 횡단류에 분사되는 액체제트의 분무특성에 대한 수치적 연구)

  • Lee Kwan-Hyung;Ko Jung-Bin;Koo Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.161-169
    • /
    • 2006
  • The spray characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which was modified to be suitable for simulating liquid jet ejected into cross flow. Wave model and Kelvin-Helmholtz(KH)/Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Numerical results were compared with experimental data in order to verify the reliability of the physical model. Liquid jet penetration length, volume flux, droplet velocity profile and SMD were obtained. Penetration length increases as flow velocity decreases and injection velocity increases. From the bottom wall, the SMD increases as vertical distance increases. Also the SMD decreases as injection angle increases.