• 제목/요약/키워드: Spray method

검색결과 1,422건 처리시간 0.029초

벽면충돌 가솔린 분무 모델 (Modeling of a Gasoline Spray Impinging on a Wall)

  • 김태완;원영호;박정규
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.30-37
    • /
    • 2001
  • Most gasoline engines employ a port injection system to achieve the better fuel-air mixing. A part of injected fuels adheres to the wall or intake valve and forms a film of liquid fuel. The other is secondarily atomized by the spray-wall interaction. A better understanding of this interaction will help in designing injection systems and controlling the strategies to improve engine performance and exhaust emissions. In the present research, the spray-wall interaction was investigated by a laser sheet visualization method. The shape of sprays was pictured at various impinging velocities and angles. The fuel dispersion was estimated by fluorescence light, and the atomization was evaluated by the enlarged images of droplets. The experimental results were compared with model predictions which are based on OPT method. The model has been modified to have the better agreement with the experimental result, and was implemented in the KIVA-II code.

  • PDF

분무 열분해방법에 의한 미세 BSCCO-2223 전구분말의 제조 (Fabrication of fine BSCCO-2223 precursor powder by spray pyrolysis process)

  • 김성환;유재무;고재웅;김영국;박기호
    • Progress in Superconductivity
    • /
    • 제5권1호
    • /
    • pp.65-69
    • /
    • 2003
  • Many researches on fabrication process for BSCCO precursor powders have been developed for high J$_{c}$ BSCCO-2223 tape. Spray pyrolysis method for fabrication of precursor powder has many advantages, such as high purity, fine particle size and low carbon content of BSCCO precursor powder. Fine, spherical powders were prepared by ultrasonic spray pyrolysis from the aqueous solution of metal nitrates. BSCCO precursor powders were synthesized with various solutes concentration and heat treatment conditions. Average particle size for spray pyrolysis powders was $1.5∼3\mu\textrm{m}$. Bi-2223/Ag tape was prepared by PIT method and followed by various sintering conditions. BSCCO precursor powders were characterized by XRD, SEM, EDS, Carbon content and particle size analysis.s.

  • PDF

Spray and Atomization Technologies in Pesticides Application: A Review

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제6권4호
    • /
    • pp.1-13
    • /
    • 2001
  • In the pesticides sprays, spray and atomization technologies to increase the deposition and reduce the drift are briefly reviewed. Further research is needed to deduce a measure of drift risk in sprays with different structures, velocity profiles. For flat fan nozzles, the data of breakup length and thickness of liquid sheet are essential to understand the atomization processes and develop the transport model to target. In the air-assisted spray technology to reduce drift, further works on the effect of application height on drift and air assistance on droplet size should be followed. In addition, methods for quantifying included air in the air inclusion techniques are required. A few researches on the droplet size of fallout can be found in the literature. A combined technology with electrostatic method into one of method for the reduction of drift may be an effective strategy for increasing deposition and reducing drift.

  • PDF

정상 할로우 콘 분무와 환형 공기 제트의 상호작용에 관한 수치적 연구 (Numerical Investigation of a Steady Non-Evaporating Hollow-Cone Spray Interacting with an Annular Air Jet)

  • 김우태;허강열
    • 한국분무공학회지
    • /
    • 제5권2호
    • /
    • pp.43-52
    • /
    • 2000
  • Numerical simulation of steady, non-evaporating hollow-cone sprays interacting with concentric annular air jets is performed using the discrete stochastic particle method in KIVA. The spray characteristics such as SMD, mean droplet velocity, liquid volume flux, air/liquid mass ratio, and droplet number density arc obtained and compared with the measurements involving different air flow rates in large and small annuli. Overall satisfactory agreement is achieved between calculation and experiment except for the deviation in the downstream SMD arising from uncertainty in the size distribution function at injection, and inaccuracy in the averaged spray parameters due to the small volumes of axisymmetric 2-D sector meshes close to the axis.

  • PDF

횡단 공기유동장으로 분사되는 저온 에탄올 제트의 침투거리 (Penetration Height of Low-temperature Ethanol Jet Injected Into a Crossflow Airstream)

  • 이종권;구자예
    • 한국분무공학회지
    • /
    • 제25권2호
    • /
    • pp.74-80
    • /
    • 2020
  • The jet in crossflow is a spray method used in the various air-breathing engine. In order to understand the spray characteristics in various environments, many prior studies have been conducted. However, there is a lack of understanding of the low-temperature liquid spray characteristics below 273 K. With this in mind, we tried to enhance the knowledge of the low-temperature liquid spray characteristics by identifying the penetration height of low-temperature ethanol. The experiment was conducted under phase pressure, and 273 K of air and 293, 263, and 233 K of ethanol was used. Shadowgraphy was employed to measure the liquid penetration, and Otsu's method was used to analyze the penetration height. The heights tend to decrease as the temperature of the liquid jet decreases. A correlation for the penetration height in the experimental conditions was derived and presented.

가시화법을 이용한 디젤 인젝터의 액적과 soot의 측정 기술 (Measurement technique for particle and soot of diesel injection by using a visualization method)

  • 정재우;박현종;이기형;이창식
    • 한국분무공학회지
    • /
    • 제6권2호
    • /
    • pp.22-28
    • /
    • 2001
  • Recently, many researches have been performed to improve the combustion and emission in a D.I.Diesel engine. Especially reduction of the soot formation in the combustion chamber is the essential to acquire the improvement of the emission performance. This emission of the diesel combustion is effected by the characteristics of air-fuel mixing. Therefore, the optical measurement technique such as LII and LIS were established in order to visualize the distribution of the soot and analyze the particle including spray in the combustion chamber. In this study, we developed the algorithm for calculating relative diameter and density of particle and applied this method to measure stimultaneously the distribution of soot and spray in a D.I. diesel engine. From this experiment we found that the soot is existed in the rich region of spray and generated caused by incapable air fuel mixture.

  • PDF

분사압력변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향 (Effect of the Change in Injection Pressure on the Mixture Formation Process in Evaporative Free Diesel Spray)

  • 염정국;정성식
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.214-219
    • /
    • 2005
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 72MPa to 112MPa by using a common rail injection system(ECD-U2). The images of liquid and vapor phase in the evaporating free diesel spray are simultaneously taken by exciplex fluorescence method. As a result, it can be confirmed that the distribution of vapor concentration is more uniform in the case of the high injection than in that of the low injection pressure.

  • PDF

내부혼합형 이류체 분사노즐에서 발생한 분무내 액적들의 크기와 속도의 상관관계 (Correlation between size and velocity of drops in a spray from an internal mixing twin-fluid atomizer)

  • 김상진;히로야스 히로유키
    • 한국분무공학회지
    • /
    • 제3권1호
    • /
    • pp.27-33
    • /
    • 1998
  • Correlations of drop size and velocity in a spray from the disintegration of liquid jet and liquid film from an internal mixing twin-fluid atomizer, were determined by phase Doppler method. The distribution pattern of Sauter mean diameter(SMD) in a spray was changed by a behavior of liquid flow. As smaller droplets became faster and slower easily by the surrounding conditions, the correlation between drop size and mean velocity was found to be varied as next 3 steps; firstly smaller droplets have a higher mean velocity at the area near atomizer, droplets have almost the same mean velocity and finally larger droplets have a higher mean velocity at the area far from an atomizer.

  • PDF

증발디젤분무의 거동특성해석을 위한 계산기법 적용에 관한 기초 연구 (Basic Study on the Application of a Computational Technique to Behavior Characteristics Analysis of the Evaporative Diesel Spray)

  • 염정국
    • 동력기계공학회지
    • /
    • 제14권6호
    • /
    • pp.5-12
    • /
    • 2010
  • In this study, an analysis of evaporative diesel spray and an usefulness of a general-purpose program, ANSYS CFX release 11.0, are investigated through the comparison and investigation of the experimental results carried out under an evaporative field, in which there is phase transition, by an exciplex fluorescence method and the results analyzed by the CFX program. The diesel fuel called n-Tridecane, $C_{13}H_{28}$, is injected from a single-hole nozzle (l/d=1.0mm/0.2mm) into a constant volume chamber under a high temperature and pressure. In the same condition as the experimental condition, the analysis was carried out. Both results of the spray tip penetration were almost coincident at each time. The results have validated the usefulness of this analysis. As a result, if the ambient pressure is high, the spray tip penetration will be shortened and move toward the nozzle exit.

스프레이 코팅 증착 방식을 이용한 계층적 미세 구조의 발수표면 제작 및 특성 분석에 대한 연구 (Study on the Fabrication and Characterization of Hydrophobic Surface with Hierarchical Microstructure using Spray Coating Deposition Method)

  • 최종윤;김기웅
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.15-22
    • /
    • 2023
  • This research introduces an innovative approach for fabricating microstructure surfaces using spray-coating deposition. The resulting surface, referred to as Magnetically Responsive Microstructures (MRM), exhibits hierarchically structured micro-pillar arrays with remarkably high aspect ratios. The fabrication process involves precisely mixing PDMS and hexane with Carbonyl iron powders, followed by ultrasonication and spray-coating on the top of a PDMS substrate placed on the neodymium magnet. The MRM surface shows hydrophobic properties, characterized by a contact angle surpassing 150° and an aspect ratio exceeding 10. Through a comprehensive exploration of critical parameters, including spray amount, magnet-substrate distance, and solution ratio enhanced dynamic tunability and exceptional hydrophobic characteristics are attained. This novel approach holds significant potential for diverse applications in the realm of dynamically tunable microstructures and magnetically responsive surfaces.