• Title/Summary/Keyword: Spray impinging

Search Result 151, Processing Time 0.024 seconds

Solidification of Hot-Dip Galvanized Layer by Electrostatically Charged Aerosol Particles (정전 대전된 액적에 의한 용융 아연 도금층의 응고 방법)

  • 김상헌;김형민;정원철;정원섭
    • Journal of Surface Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.233-240
    • /
    • 2000
  • A novel electrostatic spraying method to solidify molten zinc coating layer was studied by SEM and measurement of sample's temperature. The sprayed droplets also served as nucleation sites in the solidification reaction of molten zinc but might leave the pitting mark by impinging on its surface especially at high spray pressure. Our experimental results showed that electric field could change the sprayed particle trajectories and assist the fine droplets to attach on the surface. Thus, by reducing the spray pressure and by applying the electric voltage higher than -20 KV to charge the droplets electrostatically, we could produce the spangle free galvanized coating layer without pitting.

  • PDF

Spray Characteristics on Impingement Angle Variation and Mixture ratio of Impinging Injectors (충돌각과 혼합비 변화에 따른 충돌형 분사기의 분무특성에 관한 연구)

  • Gang, Sin Jae;Song, Beom Geun;Song, Gi Jeong;Lee, Jeong Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.72-79
    • /
    • 2003
  • Spray characteristics were investigated by impinging F-O-O-F type injector with varying the impingement angle through 15, 20 and 30 degree and the mixture ratio(O/F ratio) from 1.5 to 3.0. Experimental results show that the correlation between dispersion and impingement angle is not influenced of the mixture ratio variation, but which has influence on number density, and there is a linear correlation between dispersion and impingement angle. Velocity distribution, standard deviation and SMD of droplets are decreased as the impingement angle increases. Also, it was confirmed that the distribution of droplet size are in accordance with Rosin-Rammler and Upper-limit distribution.

An Experimental Study on the Characteristics of Spray Pattern and the Mixing Performance of Unlike-impinging Split Triplet Injector(F-O-O-F) (F-O-O-F 충돌형 injector의 분무특성 및 혼합성능에 관한 실험적 연구)

  • Lee, K.J.;Moon, D.Y.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 1999
  • Mixing efficiency of the unlike Impinging split triplet injector(FOOF type) were measured to investigate the effect of the momentum ratio variation. $H_2$O/kerosene were used as a propellant simulant. The maximum mixing efficiency occured at the momentum ratio 1.5 (total mixture ratio 1.89). Calculated mixing efficiency of real propellant LOX/Kerosene showed similar trend but maximum efficiency of characteristic velocity occurs at the momentum ratio 2.0(total mixture ratio 2.17). Although there exist a little discrepancy between calculated mixing efficiency based on simulant cold test and hot fire test results, this calculated mixing efficiency can be used to predict hot fire mixing efficiency.

  • PDF

Spreading Characteristics of a Liquid Droplet Impacting Upon the Inclined Micro-textured Surfaces (기울어진 미세 텍스쳐 표면에 충돌하는 단일 액적의 퍼짐 특성)

  • Shin, Dong-Hwan;Moon, Joo-Hyun;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2011
  • The present study investigated experimentally the spreading characteristics of a single liquid impinging on the inclined micro-textured aluminum (Al 6061) surfaces manufactured by using a micro computerized numerical control (${\mu}$-CNC) milling machine. The textured surfaces were composed of patterned micro-holes (diameter of $125\;{\mu}m$ and depth of $125\;{\mu}m$). In our experiment, the de-ionized (DI) water droplet of $4.3\;{\mu}l$ was impinged normally on the non-textured and textured surfaces at two different Weber numbers, and the droplet impinged on the inclined surfaces with different angles. A high speed camera was used to capture sequential digital images for measurement of the maximum spreading distance. It was found that for the textured surface, the measured apparent equilibrium contact angle (ECA) increased up to $105.8^{\circ}$, higher than the measured ECA of $87.6^{\circ}$ for the non-textured (bare) surface. In addition, it is conjectured that the spreading distance decreased because of a liquid penetration during droplet spreading through the holes, the increase in hydrophobicity, and viscous dissipation during impact process.

Design of Unlike Split Triplet Impinging Element for Jet Mixing (혼합성능 개선을 위한 분리 삼중충돌 요소의 설계)

  • 조용호;김경호;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.225-232
    • /
    • 2003
  • With an aim placed on its exploitation on practical injector design, liquid phase mixing due to unlike split triplet impinging element is experimentally investigated by a series of cold tests. Non-reacting kerosene/water spray simulates the kerosene/LOX propellant combination. Measurements of local mixture ratio distribution were made for different injection configurations and different momentum ratios. Mixing and mixing controlled characteristic velocity efficiencies are measured in terms of oxidizer/fuel jet momentum ratio from 0.5 to 8. Extent of mixing and its influence on hot performance are estimated in terms of mixing efficiency and mixing controlled characteristic velocity. Envelope of design locus for optimum mixing quality and corresponding maximum hot performance are proposed. Effects of momentum ratio, orifice diameter ratio and jet velocity ratios are also presented and discussed.

  • PDF

Spreading and Deposition Characteristics of a Water Droplet Impacting on Hydrophobic Textured Surfaces (소수성 텍스쳐 표면에 충돌한 단일 액적의 퍼짐 및 고착 특성)

  • Lee, Jae-Bong;Moon, Joo-Hyun;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • The present study conducts experimental investigation on spreading and deposition characteristics of a $4.3{\mu}l$ de-ionized (DI) water droplet impacting upon aluminum (Al 6061) flat and textured surfaces. The micro-textured surface consisted the micro-hole arrays (hole diameter: $125{\mu}m$, hole depth: $125{\mu}m$) fabricated by the conventional micro-computer numerical control (${\mu}$-CNC) milling machine process. We examined the surface effect of texture area fraction ${\varphi}_s$ ranging from 0 to 0.57 and impact velocity of droplet ranging from 0.40 m/s to 1.45 m/s on spreading and deposition characteristics from captured images. We used a high-speed camera to capture sequential images for investigate spreading characteristics and the image sensor to capture image of final equilibrium deposition droplet for analyze spreading diameter and contact angle. We found that the deposition droplet on textured surfaces have different wetting states. When the impact velocity is low, the non-wetting state partially exists, whereas over 0.64 m/s of impact velocity, totally wetting state is more prominent due to the increase kinetic energy of impinging droplet.

An experimental study for the prediction of combustion performance of the Unlike Impinging Quadlet Injector (충돌형 Quadlet 인젝터의 연소성능 예측에 관한 실험적 연구)

  • Kim, J.W.;Park, H.H.;Han, J.S.;Kim, S.J.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.44-50
    • /
    • 1999
  • For the prediction of combustion performance of the Unlike Impinging Quadlet Injector (OOOF type), mixing efficiency, mixing characteristic velocity, and efficiency of mixing characteristic velocity were obtained from the cold test. Water/kerosene were used for simulants, The momentum ratio of oxidizer and fuel were mixing correlating parameter. Orifice discharge coefficient, spray pattern and mass distribution were measured. As a result, invasion-depth had strong effect on mixing efficiency, mixing characteristic velocity, and efficiency of mixing characteristic velocity. Mixing efficiency and efficiency of mixing characteristic velocity showed maximum value for momentum ratio 1.67(TMR = 2.5), and fuel rich state showed larger decreasing ratio than oxidizer rich state.

  • PDF

Effect of Piston Cavity Geometry on Formation and Behavior of Fuel Mxture in a DI Gasoline Engine (직분식 가솔린엔진에서 피스톤 형상이 연료 혼합기의 형성과 거동에 미치는 영향 .)

  • Kim Dongwook;Kang Jeongjung;Choi Gyungmin;Kim Duckjool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.82-89
    • /
    • 2005
  • This study was performed to investigate the behavior and spatial distribution of fuel mixtures with different wall angle and diameter of piston cavity in a DI gasoline engine. The spatial distribution of fuel mixtures after impingement of the spray against a piston cavity is one of the most important. factors for the stratification of fuel mixture. Thus, it is informative to understand in detail the behavior and spatial distribution of fuel mixtures after impingement in the cavity. Two dimensional spray fluorescence images of liquid and vapor phase were acquired to analyze the behavior and distribution of fuel mixtures inside cylinder by exciplex fluorescence method. The exciplex system of fluorobenzene/DEMA in non-fluorescing base fuel of hexane was employed. Cavity wall angle was defined as an exterior angle of piston cavity. Wall angles of the piston cavity were set to 30, 60 and 90 degrees, respectively. The spray impinges on the cavity and diffuses along the cavity wall by its momentum. In the case of 30 degrees, the rolling-up moved from the impinging location to the round and fuel-rich mixture distributed at periphery of cylinder. In the case of 60 and 90 degrees, the rolling-up recircurated in the cavity and fuel mixtures concentrated at center region. High concentrated fuel vapor phase was observed in the cavity with 90 degrees. From. present study, it was found that the desirable cavity wall angle with cavity diameter for stratification in a Dl gasoline engine was demonstrated.

Study on Spray Phenomena and Optimal Design of Injector for Improving Small Thruster Performance (소형 추력기의 성능 개선을 위한 액체 추진제 주입기 최적 설계 및 추진제 거동 연구)

  • Kim, Ki-Ro;Kim, Su-Kyum;Byun, Do-Young;Lee, Se-Min;Jung, Kang-Su;Park, Soo-Hyung;Kim, Sung-Kyun;Yu, Myoung-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.341-347
    • /
    • 2011
  • This work studies the performance of an injector for a monopropellant thruster, comparing a conventional and new injector types. The conventional injector consists of 8 nozzles on a convex surface allowing the jet to be diverged. The new injector, we suggested, is an impinging type with nozzle holes on a concave surface. The fuel streams through the nozzle holes are collide at a point on an axial direction, which allow to atomize the liquid streams and to spray more uniformly along circular direction. The performance of the injectors is investigated by using computational fluid dynamics, particle image velocimetry and high speed camera visualization.

A Study on the Relief of Shell Wall Thinning of Low Pressure Type Feedwater Heater Around the Extraction Nozzle Identified (저압형 급수가열기 추기노즐에서 동체 감육 완화에 관한 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Seo, Hyuk-Ki
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.173-179
    • /
    • 2008
  • The current machinery and tools of secondary channel of the nuclear power plants were produced in the carbon-steel and low-alloy steel. What produced with the carbon-steel occurs wall thinning effect from flow accelerated corrosion by the fluid flow at high temperature, high pressure. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed. Wall thinning by flow accelerated corrosion occurs piping system, the heat exchanger, steam condenser and feedwater heaters etc,. Feedwater heaters of many nuclear power plants have recently experienced sever wall thinning damage, which will increase as operating time progress. This study describes the comparisons between the numerical results using the FLUENT code and experimental data of down scale model.

  • PDF