• Title/Summary/Keyword: Spray impingement

Search Result 112, Processing Time 0.028 seconds

Combustion Characteristics in the Offset Bowl Combustion Chamber Diesel Engine (편심된 보울의 연소실을 갖는 디젤 엔진의 연소 특성 해석)

  • 김홍석;성낙원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.54-65
    • /
    • 1999
  • In this study, the flow field, spray structure, and combustion process were investigated in a direct injection diesel engine having an offset bowl in a combustion chamber. The KIVA-3V code was used in this study. In order to obtain accurate results, a droplet atomization model, wall impingement model, and ignition delay concept were added to KIVA-3V code. The results showed that the offset bowl engine had a large vortex flow. The direction of this flow counteracted to the direction of fuel injection in one side of combustion chamber. It decreased local turbulent kinetic energy and eventually nonuniform combustion was resulted in an offset bowl engine. In comparison with a center bowl engine case, the peak cylinder pressure was decreased about 6%. Finally , the effect of swirl on combustion was investigated in an offset bowl engine . As the became stronger, the nouniform characteristics in combustion were increased.

  • PDF

A Study on the Relief of Shell Wall Thinning of Low Pressure Type Feedwater Heater Around the Extraction Nozzle Identified (저압형 급수가열기 추기노즐에서 동체 감육 완화에 관한 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Seo, Hyuk-Ki
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.173-179
    • /
    • 2008
  • The current machinery and tools of secondary channel of the nuclear power plants were produced in the carbon-steel and low-alloy steel. What produced with the carbon-steel occurs wall thinning effect from flow accelerated corrosion by the fluid flow at high temperature, high pressure. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed. Wall thinning by flow accelerated corrosion occurs piping system, the heat exchanger, steam condenser and feedwater heaters etc,. Feedwater heaters of many nuclear power plants have recently experienced sever wall thinning damage, which will increase as operating time progress. This study describes the comparisons between the numerical results using the FLUENT code and experimental data of down scale model.

  • PDF

Visualization of Gasoline Sprays Via a Simultaneous Inaging of Fluorescence and Scattering Lights (형광, 산란광 동시 촬열법을 이용한 가솔린 분무의 거동에 관한 연구)

  • 원영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.167-174
    • /
    • 1997
  • The penetration depth and the size distribution of the droplets of fuel sprays are important in the operation of spark-ignition MPI engines. A fluorescence/scattering image technique for droplet sizing was applied to measure th edroplet size distribution in non-evaporating gasoline sprays. The fluorescence and scattering lights were imaged simultaneously by the two-dimensional visualization system composed of a laser sheet, a doubling prism, optical filters, and a CCD camera. Quantitative droplet size distributions were extracted from evaluating the ratio of the two light densities. The mean droplet size measured by the fluorescence/scattering technique was compared with the result obtained by the enlarged photographs of droplets. The fluorescence/scattering image technique also gives the useful information of the characteristics of droplet impingement in a inclined wall.

  • PDF

Breakup Characteristics of Liquid Sheets Formed by Impinging Jets in High Pressure Environments (고압분위기에서 충돌제트로 형성되는 액막의 분열특성)

  • Jung, Ki-Hoon;Khil, Tea-Ock;Lim, Byoung-Jik;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0MPa. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity, It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

Breakup Characteristics of Laminar and Turbulent Liquid Sheets Formed by Impinging Jets in High Pressure Environments

  • Jung, K.;Khil, T.;Lim, B.;Yoon, Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.173-179
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0㎫. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity. It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

Study on Sonic/Supersonic Impinging Jets on a Flat Pate (평판에 충돌하는 음속/초음속 제트유동에 관한 연구)

  • 김희동;이호준;서태원;금기헌
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.15-15
    • /
    • 1998
  • The problem of the impingement of a sonic or a supersonic jet on a flat surface has not only wide applications but has also interesting and very complex flow phenomena. The main applications of this impinging jet include prediction of solid surface erosion, design of launcher systems, stage separation of multi-stage rocket system, V/STOL operations, thermal spray system, and manufacturing technologies of materials. Much have been learned about the supersonic impinging jet flow field but many fundamental questions have not been answered satisfactorily. The problem encompasses many facets of fluid dynamics which, in combination, present the compressibility effect and the viscous-inviscid interaction, coupled with flow separation and reattachment. What is more, there are many flow parameters that have on the impinging jet flow field, for example, Mach number, Reynolds number, pressure ratio, distance between the nozzle exit and flat plate, jet shock structure, nozzle diameter and etc. Thus the existing data on the supersonic impinging jet flow present considerable disagreement in which quantitative comparison between one result and another is often impossible.

  • PDF

A Experimental Study on the Effects of the Impingement-wall on the Spray and Combustion Characteristics of Direct-Injection LPG (충돌벽면이 직분식 LPG의 분무 및 연소 특성에 미치는 영향에 관한 실험 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.49-56
    • /
    • 2015
  • As an alternative fuel that can be used in SI engine, LPG is one of clean fuels with larger H/C ratio compared to gasoline, low $CO_2$ emission, and small amount of pollutants such as sulfur compounds. When LPG is used in spark ignition engine, volumetric efficiency of the engine can be improved and pumping loss can be reduced by performing direct injection into the combustion chamber instead of port fuel injection. LPG-DI engine allows for lean combustion and stratified combustion under low load. In case of stratified combustion, air fuel ratio can be greatly increased compared to theoretic mixture ratio combustion. Improved thermal efficiency of the engine and reduced pumping loss can be expected from stratified combustion. Accordingly in this study, an experimental apparatus for visualization was designed and manufactured to study the combustion process of LPG after injection and ignition, intended to examine ignition probability and combustion characteristics of spark ignition direct injection(SIDI) LPG fuel. Ambient pressure, ambient temperature and fuel injection pressure were found as important variables that affect ignition probability and flame propagation characteristics of LPG-air mixture. Also, it was verified that the injected LPG fuel can be directly ignited by spark plug under appropriate ambient conditions.

Study of Behavior Characteristics of Impinging Spray of Emulsified Fuel (에멀젼연료 충돌분무의 거동특성에 관한 연구)

  • Yeom, Jeong Kuk;Kim, Hak Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.909-916
    • /
    • 2015
  • In this study, to investigate the effect of spray behavior characteristics, we induce the mixing ratio of emulsified fuel using impinging spray. We formulate the emulsified fuel by mixing diesel and hydrogen peroxide($H_2O_2$). We set the temperature of the heating plate to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$, and set the injection pressures to 400, 600, 800, and 1000bar. The surfactants for the emulsified fuel mixture, which were mixed span80 and tween80 was mixed as 9:1, were fixed to 3% of the total volume of the emulsified fuel. We set the mixing ratio of $H_2O_2$ in the emulsified fuel as emulsified fuel(EF)0, EF2, EF12, and EF22. Further, we visualize the evaporation impinging spray using the Schlieren method. Based on the results of this study, we found that a higher temperature and injection pressure of the heating plate impingement led to the active diffusion of the fuel vapor, which promoted emulsified fuel evaporation. When the emulsified fuel is utilized in an actual engine, because of the temperature-drop effect of the combustion chamber, which is due to the evaporation of $H_2O_2$ in fuel and faster mixture formation is expected to decrease the engine emissions.

A Numerical Study on the Combustion Characteristics in a Liquid Rocket Engine with Film Cooling Effect (막냉각 효과를 고려한 액체로켓 엔진의 연소 특성에 관한 연구)

  • Byeon,Do-Yeong;Kim,Man-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.69-76
    • /
    • 2003
  • For stable combustion and safety of a structure of the propulsion system, a cooling system to the liquid rocket engine should be incorporated. In this study, Eulerian-Lagrangian scheme for two phase combustion, nongray radiation and soot formation effect, and film-wall interaction have been introduced to study the effect of film cooling. After briefly introducing the governing equation, combustion characteristics with change of wall temperature has been investigated by varying such parameters as fuel mass fraction for film cooling, diameter of the fuel droplet, overall mixture fraction of oxygen to fuel. Also, radiative heat flux is compared with the conductive one at the combustor wall.

Breakup Characteristics of Impinging and Swirl Type Injectors

  • Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.32-46
    • /
    • 2005
  • The breakup characteristics of liquid sheets formed by the impinging and swirl type injectors were studied as increasing the Weber number (or injection condition) and the ambient gas pressure to 4.0.MPa. In the case of impinging type injector. we compared the changes of breakup lengths between laminar and turbulent sheets. which are formed by the impingement of laminar and turbulent jets. respectively. The results showed that both sheets expand as increasing the injection velocity irrespective of the ambient gas density when the gas based Weber number is low. When the Weber number is high, however, the breakup of turbulent sheet depends on the hydraulic force of jets as well as the aerodynamic force of ambient gas which determines the breakup of laminar sheet. Using the experimental results. we could suggest empirical models on the breakup lengths of laminar and turbulent sheets. In the case of swirl type injector. as $We_l$, and ambient gas density increased, the disturbances on the annular liquid sheet surface were amplified by the increase of the aerodynamic forces. and thus the liquid sheet disintegrated near from the injector exit. Finally, the measured breakup length of swirl type injector according to the ambient gas density and $We_l$, was compared with the result by the linear instability theory. We found that the corrected breakup length relation derived from linear instability theory considering the attenuation of sheet thickness agrees well with our experimental results.

  • PDF