• Title/Summary/Keyword: Spray characteristic

Search Result 198, Processing Time 0.024 seconds

Powder Characteristic Changes of Spray-Dried WC-17%Co Composite Powder by Heat Treatment (분무건조된 WC-17%Co 복합분말의 열처리에 따른 분말특성변화)

  • Seol, Dong-Uk;Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.7 no.12
    • /
    • pp.1027-1032
    • /
    • 1997
  • 본 연구에서는 용사용WC-17%Co 복합분말을 분무건조법으로 제조하고 열처리 온도(85$0^{\circ}C$, 100$0^{\circ}C$, 115$0^{\circ}C$, 130$0^{\circ}C$)에 따른 조립분말의 미세구조, 입도분포, 유동도, 및 결정상변화를 고찰하였다. 분무건조상태의 입형은 구형이었으며, 입도분포, 평균입자크기, 유동성은 각각 20.6-51.7$\mu\textrm{m}$, 27.2$\mu\textrm{m}$, 0.26 sec/g 이었다. 열처리에 의하여 조립분말은 치밀화되어 130$0^{\circ}C$ 열처리 후에는 입도분포와 평균입자크기가 각 각 6.9-37.9$\mu\textrm{m}$과 17.8$\mu\textrm{m}$로 감소하였으며, 유동성은 0.12 sec/g로 향상되었다. 열처리중에 WC와 Co의 상화확산에 의하여 Co$_{6}$W$_{6}$C및 Co$_{3}$W$_{3}$C이 생성되었으며, 두 상이 나타나는 임계온도는 115$0^{\circ}C$이었다.

  • PDF

Effects of Injector Design Parameter on Nozzle Coking in Diesel Engines (디젤 엔진의 인젝터 설계 변수가 노즐 코킹에 미치는 영향 분석)

  • Kim, Yongrae;Song, Hanho
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.140-145
    • /
    • 2012
  • Recent common-rail injector of a diesel engine needs more smaller nozzle hole to meet the stringent emission regulation. But, small nozzle hole diameter can cause nozzle coking which is occurred due to the deposits of post-combustion products. Nozzle coking has a negative effect on the performance of fuel injector because it obstructs the fuel flow inside a nozzle hole. In this study DFSS (Design for six sigma) method was applied to find the effect of nozzle design parameter on nozzle coking. Total 9 injector samples were chosen and tested at diesel engine. The results show that nozzle hole diameter and K-factor have more effect on nozzle coking than A-mass and hole length. Large hole diameter and A-mass, small hole length and K-factor give more positive performance on nozzle coking in these experimental conditions. But, a performance about nozzle coking and exhaust gas emission shows the opposite tendency. Further study is needed to find the relation between nozzle coking and emission characteristic for the optimization of injector nozzle design.

Relay node selection scheme based on message distribution for DTN (DTN에서 메시지 분포에 따른 중계 노드 선택 기법)

  • Dho, Yoon-hyung;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.431-433
    • /
    • 2016
  • In this paper, we propose an algorithm that analyzes characteristic nodes to select efficient relay nodes using message distribution. Existing delay-tolerant network (DTN) routing algorithms have problems with large latency and overhead on account of the deficiency of network information in an unsteady network. We must solve this problem, predict future networks using node state information, and apply a weight factor that changes according to the message distribution. Simulation results show that the proposed algorithm provides enhanced performance compared to existing DTN routing algorithms.

  • PDF

Effect of the Droplet Volume on the Evaporative Characteristics of Sessile Droplet (액적 체적이 증발 특성에 미치는 영향에 관한 수치해석 연구)

  • Jeong, Chan Ho;Lee, Hyung Ju;Kim, Hong Seok;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • This study aims to investigate the influence of the droplet volume on the evaporation characteristics of the sessile droplet. In particular, the effect of the free convection in the vapor domain on the evaporation rate was analyzed through the numerical simulation. The commercial code of the ANSYS Fluent (V.2020 R2) was used to simulate the heat transfer in the liquid-vapor domain. Moreover, we used the diffusion model to estimate the evaporation rate for the different droplet volume under the room temperature. It was found that the evaporation rate significantly increases with the droplet volume because of the larger surface area for the mass transfer. Also, the effect of free convection on the evaporation rate becomes significant with an increment of droplet volume owing to the increase in the droplet radius corresponding to the characteristic length of the free convection.

Study on RDE (Real Driving Emission) Characteristic of Gasoline Vehicle Depending on the Ambient Temperature (대기 온도에 따른 가솔린 차량의 실도로 배출가스 특성 연구)

  • Kim, Hyun-Jin;Kim, Sung-Woo;Lee, Min-Ho;Kim, Ki-Ho;Lee, Jung-Min
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.221-226
    • /
    • 2018
  • Despite the increasingly stringent automotive emissions regulations, the impact of vehicle emissions on air pollution remains large. In addition, since the issue of emission of more exhaust gas than the exhaust gas measured in the test room when the vehicle passing the exhaust gas regulation standard is run on the actual road, many countries studied and introduced gas regulations about Real Driving Emission using Portable Emission Measurement System. At present, Korea regulations restrict the number of NOx and PN in diesel vehicles. In the case of gasoline vehicles, there is no regulation on emission gas, but there is a problem of continuing automobile exhaust gas problems and a large amount of gasoline GDI vehicle's PN emission. So research and interest are increasing due to this problem. In this study, characteristics of exhaust gas depending on changes of ambient temperature were analyzed among various factors affecting exhaust gas measurement of gasoline vehicles. As a result, at the low temperature test, the lower the ambient temperature, the more the exhaust gas was emitted. At ordinary temperature test, no specific tendency was observed due to changes of ambient temperature.

A Study on the MSATs (Mobile source Air Toxics) Contribution from MDTs (Medium-duty Trucks) Exhaust Emission (중형트럭에서 발생하는 배출가스 중 미량유해물질 발생 특성 연구)

  • Lim, Yun Sung;Mun, Sun Hee;Lee, Jong Tae;Dong, Jong In
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • In Korea, Medium-duty trucks are classified into GVW (Gross Vehicle Weight) 3.5~10tons. MDTs are mostly used for logistics or delivery between regions. There have been studied on diesel fuel vehicles for SUVs(Sports Utility Vehicle) or light-duty trucks. But MDTs have been not studied. Therefore, this study have been used MDTs for characteristic exhaust emission. Test was carried out using the certification test mode (NEDC, New European Driving cycle) and the NIER mode in chassis dynamometer of the MDTs. And emission gas was analyzed for PN (Particulate Number), PN size distribution and aldehydes, VOCs (Volatile Organic Compounds), PAHs (Polycyclic Aromatic Hydrocarbons). This paper concluded that EURO-IV trucks produced more MSATs than EURO V trucks. Depending on the engine temperature, more MSATs were generated in cold temperature than in the hot start operation. However, the driving speed, the opposite results was obtained.

Patent Technologies for Reducing Micro-Dust (미세먼지 저감을 위한 특허기술들)

  • Cho, Taejun;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.9-14
    • /
    • 2020
  • Four developed patents have applied for a new type of Composite Cyclone Scrubber followed by the previous research (Cho and Kim, 2017), including dust reducing fan with filters. Regarding target installation and maintenance cost, 64% reduction for investment costs (6.2 billion won vs. 17 billion won) compared to existing road pollution reduction system, while social benefit costs increase by 43% compared to existing road pollution reduction measures (72.6 billion won vs. 50.8 billion won). The composition of the device is an air blower type spiral guide vane, and an injection pressure collecting dust efficiency. A nozzle varies Injection angle and contact range, spray liquid species (waterworks, salty water). The proposed patent tests are circulation water Time-by-Time Spray and collected 41.4% more increased micro dust since the sprayed water meets contaminated gas due to the 45° degree colliding, which is 141% increased conventional dust collector. (Ratio of collection over 85%). As regards the source of collection liquid, circulated rainwater and well water, we expect a huge amount of energy and economically saved eco-friendly system in our patent. Finally, the guided vane and metal filter reduced over 90% micro-dust, while sprayed water cleans the vane and filters, resultantly minimizing the maintenance budget. The preliminary evaluations of the developed design make it possible to reduce not only cheaper maintenance budget due to the characteristic water spraying but the cost of water comes from mainly rain and underground.

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

Mixing Performance of Unlike Doublet Impinging Liquid Jets (이중 충돌제트의 혼합 성능 연구)

  • Jo, Yong Ho;Lee, Seong Ung;Yun, Ung Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.82-91
    • /
    • 2003
  • Experiments to investigate the mixing performance of unlike doublet impinging jets are conducted. Reynolds number of simulants used in this study rages from 1.0 to 1.5 Cold flow test is performed to investigate the hydrodynamic effect and spray of the impinging jets are collected locally and calculated by using Rupe's mixing efficiency equation. Momentum exchanges and relative velocity ratio between two jets are taken as the main parameter to represent the effect of enlargement of the orifice diameter. As diameter ratio increases, the corresponding momentum ratio where maximum mixing efficiency occurs and relative velocity at the maximum mixing efficiency ranges 0.6 to 0.7, respectively. Penetration depth can be taken as a prominent parameter to estimate the mixing efficiency.

Spray and Combustion Characteristics of High Density Hydrocarbon Fuel (고밀도 탄화수소계 연료의 분무 및 연소특성)

  • Lim, Byoung-Jik;Moon, Il-Yoon;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.26-33
    • /
    • 2006
  • The use of high-density propellants can provide performance advantages in space launch vehicles by allowing an improved structural ratio due to smaller propellants tanks. The Jet A-1 fuel is currently used in Korean space launch vehicle development and it has lower density than other advanced hydrocarbon fuels such as RP-1 or RG-1. In this paper, the results of hydraulic and combustion tests conducted for the two newly developed densified hydrocarbon fuels are presented and they are compared with the results of Jet A-1. Conclusively, the two densified hydrocarbon fuels presented equivalent or even higher combustion performance compared to the Jet A-1 and the performance difference was found to be more obvious in the injector of external mixing.