• Title/Summary/Keyword: Spray atomization

Search Result 1,052, Processing Time 0.02 seconds

A Study on the Atomization of a Highly Viscous Biodiesel Oil (고점성 바이오 디젤유의 분무미립화에 관한 연구)

  • 주은선;정석용;강대운;김종천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.146-153
    • /
    • 1997
  • An experiment was conducted to figure out the atomization characteristics of a highly viscous biodiesel fuel with rice-barn oil applying and ultrasonic energy into it. A spray simulator for the droplet atomization, an ultrasonic system, and six different nozzles(3 pintle-type nozzles and 3 single hole-type nozzles) were made. To investigate effects of ultrasonic energy in a highly viscous liquid fuel, an immersion liquid method was used as a measurement method on droplet size distributions. It was found that the ultrasonic energy was effective for the atomization improvement of the rice-bran oil as a highly viscous biodiesel fuel and the factor나 such as the nozzle opening pressure, pin-edge angles, hole diameters, and collection distances affected the atomization of spray droplets.

  • PDF

An Experimental Study on the Atomization Characteristics in an Intermittent Multi-hole Diesel Spray (간헐 다공 디젤 분무의 미립화 특성에 관한 실험적 연구)

  • 이지근;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.27-34
    • /
    • 2001
  • This experimental study is to investigate the intermittent spray characteristics of the multi-hole diesel nozzle with a 2-spring nozzle holder. Without changing the total orifice exit area, its hole number varied from 3($d_n=0.42mm$) to 8($d_n$=0.25mm). Through the use of the 2-D PDPA(phase Doppler particle analyzer), the droplet diameter and the velocity of the diesel spray injected intermittently from the multi-hole nozzle into the still ambient were measured. And the calculations of time-resolved diameters, SMD and AMD were made. The results can be summarized as follows. The spray of the multi-hole nozzle consisted of three parts. These are the leading edge, the central part and the trailing edge. And most of droplets produced at the trailing edge of spray. In the spray flow field, the measuring position which represented the intermittent spray characteristics well was near the nozzle tip. But at the downstream of the spray, its characteristics disappeared, and spray behavior showed a quasi steady state regardless of the time evolution of the spray. The overall mean SMD of the spray increased with the spray development, and showed their maximum value near 1.5ms regardless of hole number.

  • PDF

An Experimental Study on Spray Characteristics of Multi-Hole GDI Injector (다공형 GDI 인젝터의 분무특성에 대한 실험적 연구)

  • Lee, Sung-Won;Park, Sung-Young
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.201-209
    • /
    • 2011
  • Optimum engine performance is obtained when the spray characteristics is well matched to the geometry of a combustion chamber. Among many parameters governing the combustion performance in internal combustion engine, fuel supply characteristics and atomization are important performance factors. Therefore, spray characteristics of high pressure multi-hole injector has been studied experimentally. An experimental test system has been made to operate high pressure injection system and to visualize spray behavior. Spray visualization has been performed to analyze spray formation, spray cone angle, bent angle and penetration length. Spray interaction with piston has been analyzed with various injector installation angle, injection pressure and ambient pressure. Test results show that penetration length is greatly influenced by the injection pressure. Penetration length is decreased as ambient pressure increased. Spray cone angle is increased as injection pressure and ambient pressure increased. However, bent angle is not influenced by the change of injection pressure and ambient pressure. Spray cone angle distribution map is plotted using the experimental data. Fuel movement around the spark-plug has been enforced as increasing injector installation angle.

A Numerical Study on the Spray-to-Spray Impingement System (분무간 충돌시스템에 대한 수치해석적 연구)

  • Ko, Gwon-Hyun;Ryou, Hong-Sun;Lee, Seong-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.75-80
    • /
    • 2001
  • The present article deals with the numerical calculations for the inter-spray impingement of two diesel sprays under the conditions of high injection pressure. The Wave model involving the cavitation effect inside the nozzle was used for describing the atomization process. In particular, a hybrid model for drop collision was newly suggested in this study and compared with the O'Rourk's model, which has been widely used for diesel sprays. The impingement angles of 60 and 90 degrees were considered for simulation of non-evaporative diesel sprays. The calculated results for tip penetration were compared with experimental data and the Sauter Mean Diameter(SMD) characteristic was analyzed. It was concluded that the hybrid model slightly shows better agreement with experimental data than the O'Rourke's model. However, the more elaborate study should be needed for better understanding of spray-to-spray impingement phenomena.

  • PDF

Spray and Combustion Characteristics of DME and Diesel Fuel in a Common-Rail Diesel Engine (커먼레일 디젤엔진의 DME와 디젤연료의 분무 및 연소 특성)

  • Kim, Myung-Yoon;Ha, Sung-Yong;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.30-37
    • /
    • 2007
  • Dimethyl ether (DME) as an alternative fuel for compression ignition engine was investigated by measuring spray development processes, injection rate profiles, engine performance, and exhaust emission characteristics. The results of DME fueled engine were compared with those obtained by fueled with diesel. The experimental results showed that DME has approximately 0.03ms shorter injection delay and higher maximum injection rate than those of diesel fuel at a constant injection pressure of 50MPa. The spray visualization indicates that DME has shorter spray tip penetration due to its low density and faster evaporation. The combustion characteristics of DME operated engine provided faster ignition delay and three times shorter combustion duration. It is believed that the better evaporation and atomization characteristic of DME contributes the faster combustion. At all operating condition, soot emission was not detected due to the clean combustion of DME.

  • PDF

Experimental Study on the Merged Angle of Mixed-Interaction Regions of Sprays from Two Pressure-Swirl Injectors (스월 분사기 분무 혼합충돌지역에서의 중첩각도에 관한 실험적 연구)

  • Yi, Young-Sun;Hong, Moon-Geun;Lee, Soo-Yong
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.195-200
    • /
    • 2011
  • The pressure-swirl atomizer is widely used for the injectors in liquid rocket engines thanks to its high performance atomization and broad stability margin range. Spray mixed-interaction is an important area of study especially in cases where the propellant is mixed by spray interaction after an oxidant and a fuel are discharged separately. This interaction of sprays results in a significant modification of the spray characteristics such as the spatial evolution of the sprays. Experiments are conducted by a photographic technique to quantify the merged angle of the interaction regions of sprays from two pressure-swirl injectors. The experimental results show that the merged angle is mainly determined by the momentum flux ratios between two swirled sprays.

The Experimental Study of Atomization Characteristics of Gasoline Spray Impinging on Glow Plug

  • Moon, Young-ho;Oh, Young-taig
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.270-278
    • /
    • 2002
  • In order to reduce the exhaust emissions of a spark ignition engine, it is important not only to improve the catalyst conversion efficiency, but also to directly reduce the engine-out exhaust emissions during a cold starting of the engine and warm up periods. The purpose of this study is to evaluate feasibility of a glow plug for an early fuel evaporator. In order to promote atomization, gasoline is injected on the glow plug with room temperature(20$\^{C}$) and high temperature(250$\^{C}$). To analyze the spray behavior characteristics, a PMAS is used to measure the SMD and the dropsize distribution of an impinging spray and a free spray. Results show that the evaporation rate of the impinging spray on the high temperature surface of the glow plug was higher than that of the free spray on the room temperature surface.