• Title/Summary/Keyword: Spray and Wait Protocol

Search Result 5, Processing Time 0.016 seconds

Hybrid Spray and Wait Routing Protocol in DTN (DTN에서 Hybrid Spray and Wait 라우팅 프로토콜)

  • Hyun, Sung-Su;Jeong, Hyeon-Jin;Choi, Seoung-Sik
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.53-62
    • /
    • 2014
  • DTN is the next generation network that is used in not guaranteed end-to-end connection such as communication between planet and satellite, frequent connection severance, and not enough for qualified network infrastructure. In this paper, we propose the hybrid Spray-and-Wait algorithm to predict the node contact time by monitoring the periodic contacts information between the nodes. Based on this method, we select one node on the basis of prediction time and copy a message for spray and wait algorithm. In order to verify the the hybrid Spray and Wait algorithm, we use the ONE(Opportunistic Network Environment) Simulator of Helsinki University. The delivery probability of the proposed algorithm is compared to the Binary Spray and Wait algorithm, it is showed that it has 10% less overhead than Binary Spray and Wait routing. It has also shown that it reduces unnecessary copying of this message.

Probability-Based Message Forwarding Scheme with Buffer Management for Spray and Wait Routing Protocol (Spray and Wait 라우팅을 위한 확률 기반의 메시지 전달 방안 및 버퍼 관리 방안)

  • Kim, Eung-Hyup;Lee, Myung-Ki;Cho, You-Ze
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.7
    • /
    • pp.153-158
    • /
    • 2016
  • Delay Tolerant Network (DTN) is a network that employed method of store-carry-forward in intermittently connected networks. In DTNs, routing and buffer management scheme are important to improve successful message delivery. This paper proposes an improve spray and wait routing protocol based on delivery probability to a destination. Also, a buffer management scheme is proposed to drop the queued messages according to the number of copies (L value). Simulation results show that the proposed method provides a better delivery ratio and lower communication overhead when compared to existing schemes such as Epidemic, PRoPHET and spray and wait.

An Efficient Routing Algorithm for extreme networking environments (극단적인 네트워크 환경을 위한 효율적인 라우팅 알고리즘)

  • Wang, Jong Soo;Seo, Doo Ok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • Sensor networks and car networks that have different structure from that of conventional TCP/IP network require extreme network environment due to frequent change of connectivity. Because such extreme network environment has characteristics like unreliable link connectivity, long delay time, asymmetrical data transfer rate, and high error rate, etc., it is difficult to perform normally with the conventional TCP/P-based routing. DTNs (delay and disruption tolerant network) was designed to support data transfer in extreme network environment with long delay time and no guarantee for continuous connectivity between terminals. This study suggests an algorithm that limits the maximum number of copying transferred message to L by improving the spray and wait routing protocol, which is one of the conventional DTNs routing protocols, and using the azimuth and density data of the mobile nods. The suggested algorithm was examined by using ONE, a DTNs simulator. As a result, it could reduce the delay time and overhead of unnecessary packets compared to the conventional spray and wait routing protocol.

HESnW: History Encounters-Based Spray-and-Wait Routing Protocol for Delay Tolerant Networks

  • Gan, Shunyi;Zhou, Jipeng;Wei, Kaimin
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.618-629
    • /
    • 2017
  • Mobile nodes can't always connect each other in DTNs (delay tolerant networks). Many DTN routing protocols that favor the "multi-hop forwarding" are proposed to solve these network problems. But they also lead to intolerant delivery cost so that designing a overhead-efficient routing protocol which is able to perform well in delivery ratio with lower delivery cost at the same time is valuable. Therefore, we utilize the small-world property and propose a new delivery metric called multi-probability to design our relay node selection principles that nodes with lower delivery predictability can also be selected to be the relay nodes if one of their history nodes has higher delivery predictability. So, we can find more potential relay nodes to reduce the forwarding overhead of successfully delivered messages through our proposed algorithm called HESnW. We also apply our new messages copies allocation scheme to optimize the routing performance. Comparing to existing routing algorithms, simulation results show that HESnW can reduce the delivery cost while it can also obtain a rather high delivery ratio.

An Efficient Routing Algorithm Based on the Largest Common Neighbor and Direction Information for DTMNs (DTMNs를 위한 방향성 정보와 최대 공동 이웃 노드에 기반한 효율적인 라우팅 프로토콜)

  • Seo, Doo Ok;Lee, Dong Ho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.1
    • /
    • pp.83-90
    • /
    • 2010
  • DTNs (Delay Tolerant Networks) refer to the networks that can support data transmission in the extreme networking situations such as continuous delay and no connectivity between ends. DTMNs (Delay Tolerant Networks) are a specific range of DTNs, and its chief considerations in the process of message delivery in the routing protocol are the transmission delay, improvement of reliability, and reduction of network loading. This article proposes a new LCN (Largest Common Neighbor) routing algorism to improve Spray and Wait routing protocol that prevents the generation of unnecessary packets in a network by letting mobile nodes limit the number of copies of their messages to all nodes to L. Since higher L is distributed to nodes with directivity to the destination node and the maximum number of common neighbor nodes among the mobile nodes based on the directivity information of each node and the maximum number of common neighbor nodes, more efficient node transmission can be realized. In order to verify this proposed algorism, DTN simulator was designed by using ONE simulator. According to the result of this simulation, the suggested algorism can reduce average delay and unnecessary message generation.