• Title/Summary/Keyword: Spray Volume

Search Result 331, Processing Time 0.025 seconds

Transient Breakup Phenomena of Initial Spray from High-Pressure Swirl Injector (와류형 고압인젝터의 초기분무의 분열 과도현상)

  • Choi, Dong-Seok;Kim, Duck-Jool;Ko, Chang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The disintegration process of initial spray from high-pressure swirl injector was investigated at different injection pressures. The transient breakup phenomena that were difficult to observe at high injection pressure were easily observed at the low injection pressure of 0.4MPa. The effect of fuel remained inside a nozzle hole volume on the penetration of initial spray was also investigated. The disintegration process of initial spray could be classified four regions: the formation of mushroom shape, the first collision, the second collision, and the development of spray, The liquid film of cup shape was particularly found in the second collision region, and the growth ratio of its length and width at low and high injection pressures were compared.

Fuel Spray Characteristics in the High Pressure Injection Process (고압분사 시 연료분무 특성에 관한 연구)

  • Ahn, J.H.;Kim, H.M.;Shin, M.C.;Kim, S.W.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.31-38
    • /
    • 2003
  • Constant volume combustion chamber has been designed to investigate diesel spray characteristics with Common-Rail injection system to realize high pressure injection. In this study, two methods of measurements, Schlieren shadowgraphy and Mie scattering imaging method ate applied experimentally to study spray form and liquid phase zone in high pressure, high temperature conditions. Diesel fuel is injected at the point which ignited mixture gas is completely burned. The effect of injection pressure, injector hole diameter, ambient gas temperature and density are investigated experimentally.

  • PDF

Experimental Study on the Flow Characteristic of a Confined Ppray (제한된 공간내 분무의 유동특성 실험)

  • 정선재;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.1011-1018
    • /
    • 1992
  • A series of experiment has been performed on the spray characteristics in a cylindrical confined space with the injection pressure taken as a parameter. By using a single-hole patternator and the Malvern particle sizer, the spray mass flux, drop size and volume concentration distributions along the radial and axial directions were obtained ; the line-of- sight data by Malvern particle sizer have been converted to the ring-of-sight data by using the tomographical transformation techniqe. The experimental results show that, due to the restriction on the ambient gas entrainment by the wall boundary, the effective spray angle is increasing. The spray drops were measured to be smaller in the confined space because of a large number of floating small drops by recirculation of the gas phase and the breakup of large drops by the wall collision. Also the details on the flow behavior of the confined spray are discussed.

Residue analysis of spinetoram and spinosad on paprika leaf using the modified QuEChERS pre-treatment methods

  • Kim, Young-Shin;Yang, Jun-Young;Jin, Na-Young;Yu, Yong-Man;Youn, Young-Nam;Lim, Chi-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.487-494
    • /
    • 2017
  • Spinosad and spinetoram are widely used insecticides for the control of lepidopteran larvae, leaf miners, and thrips; however, they might also have low toxicity toward beneficial insects like bees. Because these pesticides are easily photolyzed by ultraviolet radiation, the QuEChERS method, with its simple pretreatment procedure, is often used for analyzing residues of spinosad and spinetoram. The present study performed a residue analysis using a modified QuEChERS method by pretreating with ammonium salt. The limit of detection (LOD) of the modified method was 0.05 mg/kg and the limit of quantification (LOQ) was 0.25 mg/kg. The coefficient of determination ($R^2$) for the calibration curve was 0.999. Also, we examined any change in the adhesion of spinosad and spinetoram on the plants depending on a spray volume. The adhesion was approximately 70% when the spray volume was increased from 60 L to 120 L per 10 a whereas the adhesion was approximately 37% when the spray volume was increased from 125 L to 250 L. This showed that the amount of adhesion decreased with the higher spray volume. The efficacy result of spinetoram was that over 90% of Frankliniella occidentalis was controlled with the application volume of 125 L per 10 a. Therefore, the result of this study indicates that control of insects is effective and sufficient with a spray volume of 125 L per 10 a in paprika cultivation facilities.

A Effect of Fuel Properties on Spray Structure for Dual Orifice Fuel Injector (연료의 물성치 변화가 이중 오리피스 연료 노즐의 분무 구조에 미치는 영향에 관한 연구)

  • Lee, Dong-Hun;Choi, Seong-Man;Park, Jeong-Bae
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.179-188
    • /
    • 2003
  • The spray characteristics of dual orifice injector were investigated under two different fuels through measurement of SMD, number density and volume flux by using PDPA system. In this experiment, we found out that the droplet size and spray structure are strongly depend on fuel density and viscosity.

  • PDF

Numerical Study of Spray Characteristics of n-Heptane in Constant Volume Combustion Chamber under Diesel Engine Conditions (정적연소기를 이용한 디젤 엔진 조건에서 n-Heptane의 분무특성에 관한 수치해석 연구)

  • DAS, SHUBHRA KANTI;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.727-736
    • /
    • 2016
  • Numerical simulations of n-heptane spray characteristics in a constant volume combustion chamber under diesel engine like conditions with increasing ambient gas density ($14.8-142kg/m^3$) and ambient temperature (800-1000 K) respectively were performed to understand the non-vaporizing and vaporizing spray behavior. The effect of fuel temperature (ranging 273-313 K) on spray characteristics was also simulated. In this simulation, spray modeling was implemented into ANSYS FORTE where the initial spray conditions at the nozzle exit and droplet breakups were determined through nozzle flow model and Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) model. Simulation results were compared with experimentally obtained spray tip penetration result to examine the accuracy. In case of non-vaporizing condition, simulation results show that with an increment of the magnitude of ambient gas density and pressure, the vapor penetration length, liquid penetration length and droplet mass decreases. On the other hand vapor penetration, liquid penetration and droplet mass increases with the increase of ambient temperature at the vaporizing condition. In case of lower injection pressure, vapor tip penetration and droplet mass are increased with a reduction in fuel temperature under the low ambient temperature and pressure.

Atomization Characteristics of Small LRE-Injector Spray According to Injection Pressure Variation (소형 액체로켓엔진 인젝터 분무의 분사압력 변이에 따른 미립화 특성)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.125-128
    • /
    • 2008
  • Atomization characteristics of small LRE-injector spray are investigated by using dual-mode phase Doppler anemometry (DPDA). Velocity, size, number density, and volume flux were measured at various injection pressures along the radial distance to make a close inquiry into spatial distribution characteristic of spray droplets. As the injection pressure increases, the velocity, turbulence intensity, number density, and volume flux of spray droplets become higher, whereas the droplet size ($D_{10}$ or $D_{32}$) gets smaller. Also, velocity and volume flux are proportional to Sauter mean diameter (SMD, $D_{32}$).

  • PDF

Spray Charateristics of Water/Oil Emulsified Fuel in Pressure-Swirl Nozzle (압력선회노즐에서 물-기름 유화연료의 분무특성)

  • Rhim, J.H.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 2000
  • The beneficial aspects of applying emulsion fuels to combustion systems may be due to the changes of fuel properties which lead to the enhanced atomization characteristics. The spray characteristics of water/oil emulsified fuel injected from the pressure-swirl(simplex) atomizer using for oil burner were investigated. Four different water contents from 10 to 40 % by volume at 10% increment were prepared by mixing with the different contents of surfactants. Total amount of surfactant used was varied from 1 to 3 % by volume. This study demonstrates the influence of water and surfactant contents of emulsified fuel, injection pressure on the spray characteristics, i.e. Sauter mean diameter(SMD) and spray angle. The drop size distribution of the emulsified fuel spray was measured with a Malvem particle sizer. In order to measure the spray angle, the digital image processing was employed by capturing multiple images of the spray with 3-CCD digital video camera. It was evident that the addition of water and surfactant changes fuel properties which are the key parameters influencing the atomization of the spray. The increase in surfactant content results in the decrease of SMD and the increase in spray angle. The droplets decease with increase in injection pressure, but the influence of injection pressure in this experimental condition was less important than expected. The more viscous fuel with the increase of water content exhibits the larger droplets in the centerline of the spray, and the less viscous fuel in the outer edges of the spray. The increase in axial position from the nozzle causes the spray angle to decrease. The spray angle decreases with increase in water content. This is due to increase in viscosity with increase in water content.

  • PDF

Effect of Diesel Nozzle Internal Geometry on the Spray Characteristics (디젤노즐의 내부구조가 분무특성에 미치는 효과)

  • 배종욱;안수길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1238-1249
    • /
    • 1989
  • 본 연구에서는 분무체적에 영향을 미치는 분사차압, 주위공기밀도, 노즐공의 직경과 분무각을 변수로 하여 상관관계식을 이론적으로 유도하고 이를 근거로 하여 분 무의 평균공연비 증대를 향상시키는 방안을 제시하였다.

Behavior of 2-Stage Injection on Diesel Spray (2단분사 디젤분무의 거동)

  • Park, B.D.;Kwon, S.I.;Oh, J.G.;Kim, S.J.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.33-39
    • /
    • 2000
  • The behavior of the 2-stage spray was studied by using the schlieren method with the high pressure common-rail injection system. The spray injected 2 times with the interval of $0.3ms{\sim}1.5ms$ between the 1st and the 2nd spray in a modeled combustion chamber of constant volume bomb. In this case, the quantity of injected fuel of 1st and 2nd also changed. The schlieren photograph shows that the 2nd spray goes further away than the 1st spray when the quantity of the 1st spray is less than that of the 2nd spray. The dispersion of the vapour to the combustion chamber is not affect in a 10% of 1st spray quantity. When the 1st spray quantity is more than the 2nd spray, the vapour scattering of spray is good.

  • PDF