• 제목/요약/키워드: Spray Simulation

검색결과 216건 처리시간 0.024초

스프레이와 댐퍼를 이용한 관류 보일러 스팀 온도의 (2X2) 동역학 행렬 제어에 관한 연구 (A Study on Dynamic Matrix Control using Spray and Damper to Once-through Boiler Steam Temperature)

  • 김우헌;문운철
    • 조명전기설비학회논문지
    • /
    • 제24권1호
    • /
    • pp.91-97
    • /
    • 2010
  • 동역학 행렬 제어(Dynamic Matrix Control) 기법은 각종 산업 현장에서 가장 활발하게 적용되고 있는 고급 제어 기법으로, 최근에는 공정제어의 표준 기법으로 인식되고 있다. 일반적으로 동역학 행렬 제어에서는 대상 플랜트의 거동을 묘사하기 위하여 계단 응답 모델을 이용한다. 본 논문에서는 화력발전의 관류 보일러-터빈 시스템에 동역학 행렬 제어 기법을 적용한 결과를 제시한다. 먼저 제어를 위해 두 개의 입력변수로 스프레이와 댐퍼를 선정한 후, 두 개의 주요 출력 변수에 대한 계단 응답 모델을 생성하였다. 그 후, 생성된 2 입력 - 2 출력 계단 응답 모델을 바탕으로 한, 동역학 행렬 제어의 최적화 계산을 통해 매 순간 보일러 스팀 온도를 제어하는 구조의 제어기를 설계하였다. 제시된 제어기를 두산(주)의 보일러 시뮬레이션 모델인 APESS에 적용한 결과 만족할 만한 제어 성능을 나타냄을 확인하였다.

TAB 모텔과 수정된 액적 항력 모텔을 이용한 공기 보초 분무에서의 액적 분열에 대한 수치적 연구 (Numerical Study an Drop Breakup in Air-Assisted Spray Using the TAB Model with a Modified Drop Drag Model)

  • 고권현;유홍선;이성혁;홍기배
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.87-95
    • /
    • 2002
  • The aim of this article is to perform the numerical simulation far drop drag and breakup processes in air-assisted sprays using the Taylor analogy breakup (TAB) model with a modified drop drag model, in which a random method is newly used to consider the variation of the drop's frontal area. The predicted results for drop trajectory and Salter mean diameter (SMD) were compared with experimental data and the simulation results using the earlier published models such as TAH model, surface wave instability (Wave) model, and Wave model with original drop drag model. In addition, the effects of the breakup model constant, Ck, on prediction of spray behaviors were discussed. The results shows that the TAB model with the modified drop drag model is in better agreement with experimental data than the other models, indicating the present model is acceptable for predicting the drop breakup process in air-assisted sprays. At higher Weber numbers, the smaller Ck shows the best fitting to experimental data. It should be noted that more elaborated studies is required in order to determine the breakup model constant in the suggested model in the study.

Virtual Reality Content-Based Training for Spray Painting Tasks in the Shipbuilding Industry

  • Lee, Gun-A.;Yang, Ung-Yeon;Son, Wook-Ho;Kim, Yong-Wan;Jo, Dong-Sik;Kim, Ki-Hong;Choi, Jin-Sung
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.695-703
    • /
    • 2010
  • Training is one of the representative application fields of virtual reality technology where users can have virtual experience in a training task and working environment. Widely used in the medical and military fields, virtual-reality-based training systems are also useful in industrial fields, such as the aerospace industry, since they show superiority over real training environments in terms of accessibility, safety, and cost. The shipbuilding industry is known as a labor-intensive industry that demands a lot of skilled workers. In particular, painting jobs in the shipbuilding industry require a continuous supplement of human resources since many workers leave due to the poor working environment. In this paper, the authors present a virtual-reality-based training system for spray painting tasks in the shipbuilding industry. The design issues and implementation details of the training system are described, and also its advantages and shortcomings are discussed based on use cases in actual work fields.

Spray Combustion Simulation in Transverse Injecting Configurations

  • Yi, Yoon-Yong;Roh, Tae-Seong
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.186-191
    • /
    • 2004
  • The reactive flowfield of the transverse injecting combustor has been studied using Euler-Lagrange method in order to develop an efficient solution procedure for the understanding of liquid spray combustion in the transverse injecting combustor which has been widely used in ramjets and turbojet afterburners. The unsteady two-dimensional gas-phase equations have been represented in Eulerian coordinates and the liquid-phase equations have been formulated in Lagrangian coordinates. The gas-phase equations based on the conservation of mass, momentum, and energy have been supplemented by combustion. The vaporization model takes into account the transient effects associated with the droplet heating and the liquid-phase internal circulation. The droplet trajectories have been determined by the integration of the Lagrangian equation in the flow field obtained from the separate calculation without considering the iterative effect between liquid and gas phases. The reported droplet trajectories had been found to deviate from the initial conical path toward the flow direction in the very end of its lifetime when the droplet size had become small due to evaporation. The integration scheme has been based on the TEACH algorithm for gas-phase equation, the second order Runge-Kutta method for liquid-phase equations and the linear interpolation between the two coordinate systems. The calculation results has shown that the characteristics of the droplet penetration and recirculation have been strongly influenced by the interaction between gas and liquid phases in such a way that most of the vaporization process has been confined to the wake region of the injector, thereby improving the flame stabilization properties of the flowfield.

  • PDF

AMESim을 이용한, GDI 엔진에서 연료의 분사조건 변화에 따른 분사량 변화 예측 (Simulation Injection Mass with Variable Injection Condition in GDI Engine using AMESim)

  • 신석신;송진근;박종호
    • 한국분무공학회지
    • /
    • 제18권1호
    • /
    • pp.61-65
    • /
    • 2013
  • In case of GDI engine, shape of injected fuel and injection mass are one of the most important factors for good fuel efficiency and power. But it should be too inefficient and difficult to acquire injection mass data by experiment because condition in engine vary with temperature, pressure, and so on. So, this paper suggests the AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) as simulation program to calculate injection mass. For both simulation and experiment, n-heptane is used as fuel. In AMESim, I modeled the GDI injector and simulated several cases. In experiment, I acquired the injection mass using Bosch method to apply ambient pressure. The AMESim show reasonable result in comparison with experimental data especially at injection pressure 15 MPa. Other conditions are also in good accord with experimental data but error is a little bit large because the injection mass is so low.

분무성형공정에서의 빌렛형상 모델링 (Modeling of Billet Shape in Spray Forming Process)

  • 장동훈;강신일;이언식
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.961-970
    • /
    • 1997
  • A numerical method is presented to predict and analyze the shape of a growing billet produced from the "spray forming process" which is a fairly new near-net shape manufacturing process. It is important to understand the mechanism of billet growing because one can obtain a billet with the desired final shape without secondary operations by accurate control of the billet shape, and it can also serve as a base for heat transfer and deformation analysis. The shape of a growing billet is determined by the flow rate of the alloy melt, the mode of nozzle scanning which is due to cam profile, the initial positio of the spray nozzle, scanning angle, and the withdrawal speed of the substrate. In the present study, a theoretical model is first established to predict the shape of the billet and next the effects of the most dominent processing conditions, such as withdrawal speed of the substrate and the cam profile, on the shape of the growing billet are studied. Process conditions are obtained to produce a billet with uniform diameter and flat top surface, and an ASP30 high speed steel billet is manufactured using the same process conditions established from the simulation.imulation.

자동차 동력원별(ICEV, PHEV) 연비산출 모델개발 및 이의 검증 (Verification and Development of Simulation Model for Fuel Consumption Calculation between ICEV and PHEV)

  • 김주환;박정민;김탁규;이진욱
    • 한국분무공학회지
    • /
    • 제22권2호
    • /
    • pp.47-54
    • /
    • 2017
  • $CO_2$ emission regulation will be prescribed and main issue in automotive industry. Mostly, vehicle's fuel efficiency deeply related to $CO_2$ emission is regulated by qualified driving test cycle by using chassis dynamometer and exhaust gas analyser. But, real driving fuel consumption rate depends so much on the individual usage profile and where it is being driven: city traffic, road conditions. In this study, vehicle model of fuel consumption rate for ICEV and PHEV was developed through co-simulation with CRUISE model and Simulink based on driving control model. The simulation results of fuel consumption rate were analysed with on-road vehicle data and compared with its official level.

컴퓨터 시뮬레이션을 이용한 고압다이캐스팅 금형의 이형제 분사공정에 따른 금형온도분포 및 금형수명 예측 (A prediction of mold temperature distribution and lifetime with different spray process of mold release agent in high pressure diecasting mold using computer simulation)

  • 김동현;윤상일;장대정
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.49-53
    • /
    • 2019
  • The temperature distribution and lifetime of molds were predicted by computer simulation analysis with various spraying and blowing process of high pressure die casting. After varying the spraying angle and time, the mold temperature, heat exchange and mold life were predicted. As the spraying angle increases, the maximum temperature of the mold decreases, which is because the spraying area increases and the heat exchange with the mold increases. Heat exchange occurs more actively in the blowing process than in the spraying process. This is because the cooling is not performed due to the steam generation. When the spraying angle is 50 degree, the minimum life of the mold is analyzed 200 times. After adjusting the blowing time from 5s to 3s, the minimum lifetime of the mold has been increased almost twice.

엘보탄도막방수공법의 성능평가를 위한실험적 연구 및 VE분석 (An Experimental Study and Value Analysis for Performance Assessment of the Embo-thane Membrane Waterproofing Method)

  • 윤차웅;이승수;김상록;서종원
    • 한국건설관리학회논문집
    • /
    • 제10권5호
    • /
    • pp.123-134
    • /
    • 2009
  • 1970 년대 이후, 우레탄 도막방수공법은 자외선에 강하고 탄성 및 수밀성이 뛰어나 지붕 및 지하바닥, 스포츠경기장 등에 널리 활용되고 있다. 그러나 옥상 및 지하공간은 미끄럼으로 인한 위험이 많고 다양한 외력으로 하자발생이 빈번하여, 미끄럼방지기능 및 내구성을 향상시켜야 하고 사용자의 편의성 및 심미적 측면의 기능성을 고려한 우레탄 도막방수공법의 개발이 절실하다. 따라서 기존 우레탄의 장점을 유지하고 성능 및 기능을 향상시킨 다양한 공법이 개발되고 있으며, 최근에 엠보스프레이 코팅시스템(Embo spray coating system)을 활용한 엠보탄(Embo-thane) 도막방수공법이 개발되었다. 본 논문은 엠보탄 도막방수공법의 노출 비노출 바닥재에 대하여 살펴보고 기존의 우레탄 도막방수공법과의 성능 및 기능에 대한 객관적 비교 분석을 실시하기 위하여 인장강도, 신장률, 부착성능, 내마모성, 미끄럼저항성능에 대한 실험적 연구를 실시하였다. 그리고 엠보탄 방수공법의 물리적 성능뿐만 아니라 공법의 설계적 측면을 고려한 평가기준항목 설정과, AHP(Analytic Hierarchy Process)기법을 활용한 VE(Value Engineering)분석을 실시하여, 엠보탄 도막방수공법이 기존의 우레탄 도막방수공법에 비교하여 성능 및 기능에 대한 개선정도를 성능점수(performance index)를 통하여 제시하였다. 또한, 불확실성이 고려된 결과에 대한 평가를 위하여 Monte Carlo Simulation기법을 활용하여 확률적 접근방법을 통한 신뢰도 분석을 실시하고자한다.

실린더내 현상해석용 가시화 엔진 (Optically Access Engine to Investigate in Cylinder Phenomena)

  • 권순익
    • 한국산업융합학회 논문집
    • /
    • 제2권1호
    • /
    • pp.3-15
    • /
    • 1999
  • It is necessary to observe the in-cylinder phenomena directly for understanding in-cylinder air motion, combustion and evaluation of the numerical simulation. This paper describes the usage, structure and peculiar technique in design, and introduces the examples of the analyses using the engine from the Honda R&D Technical Review.

  • PDF