• Title/Summary/Keyword: Spray Drying Absorber(SDA)

Search Result 3, Processing Time 0.013 seconds

Model Development of Spray Dryer Absorber FGD Process (Spray Dryer Absorber 배연탈황공정의 모델 개발)

  • Jang, Sun-Hee;Oh, Eui-Kyung;Lee, Hyung-Keun;Kim, Sun-Geon
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.80-95
    • /
    • 1996
  • A mathematical model has been developed for simulating the spray dryer absorber (SDA) used in semi-dry flue gas desulfurization process. Fundamental equations include the component mass and heat balances in both gas and droplet phases and the equation of motion for a single droplet. The model developed described the pilot-plant data much better than the existing SPRAYMOD-M model. The effect of the process variables, whose values were chosen within the operation limits of the actual pilot plants, on % $SO_2$ removal or conversion of the sorbent were calculated, and discussed in terms of $SO_2$ absorption rate, the residence time of flue gas, the velocity and drying time of droplets. Finally, the % $SO_2$ removal was calculated with two independent process variables and the results were shown on three-dimensional or two-dimensional diagrams with the lines of constant % $SO_2$ removal, so that they can be easily applied to preliminary design of the SDA.

  • PDF

An application of the electrostatic spray technology to increase scrubbing efficiency of SO$_{2}$ emitted from thermal systems (열시스템에서 생성된 SO$_{2}$ 가스의 배출저감을 위한 정전기 분무 원리의 응용)

  • Jeong, Jae-Yun;Byeon, Yeong-Cheol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1068-1076
    • /
    • 1997
  • Emission control of acid exhaust gases from coal-fired power plants and waste incinerators has become an increasing concern of both industries and regulators. Among those gaseous emissions, SO$_{2}$ has been eliminated by a Spray Drying Absorber (SDA) system, where the exhaust gas is mixed with atomized limestone-water slurry droplets and then the chemical reaction of SO$_{2}$ with alkaline components of the liquid feed forms sulfates. Liquid atomization is necessary because it maximizes the reaction efficiency by increasing the total surface area of the alkaline components. An experimental study was performed with a laboratory scale SDA to investigate whether the scrubbing efficiency for SO$_{2}$ reduction increased or not with the application of a DC electric field to the limestone-water slurry. For a selected experimental condition SO$_{2}$ concentrations exited from the reactor were measured with various applied voltages and liquid flow rates. The applied voltage varied from -10 to 10 kV by 1 kV, and the volume flow rate of slurry was set to 15, 25, 35 ml/min which were within the range of emission mode. Consequently, the SO$_{2}$ scrubbing efficiency increased with increasing the applied voltage but was independent of the polarity of the applied voltage. For the electrical and flow conditions considered a theoretical study of estimating average size and charge of the atomized droplets was carried out based on the measured current-voltage characteristics. The droplet charge to mass ratio increased and the droplet diameter decreased as the strength of the applied voltage increased.

Numerical and Experimental Study on the Increase of Removal Efficiency of SO2 in a Laboratory Scale Electrostatic Spray Drying Absorber (실험실 규모 정전기 분무형 반건식 세정기의 SO2 제거효율 향상에 대한 계산 및 실험적 연구)

  • Byun, Young-Cheol;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1111-1120
    • /
    • 1998
  • Spray Drying Absorber(SDA) system, where the combustion product gas is mixed with atomized limestone-slurry droplets and then the chemical reaction of $SO_2$ with alkaline components of the liquid droplets forms sulfates, has been widely used to eliminate $SO_2$ gas from coal fired power plants and waste incinerators. Liquid atomization is necessary because it can maximize the reaction efficiency by increasing the total surface area and dispersion angle of the alkaline components. First, numerical calculations using FLUENT are carried out to investigate $SO_2$ concentration distribution and thus to calculate $SO_2$ removal efficiency. So to attain the optimized spray conditions, then an electrostatic spraying system is set up and spray visualization is performed to show the effect of an electric field on overall droplet size. Next, the effect of an electric field on the concentrations of $SO_2$ is experimentally examined. Field strength is varied from -10 kV to 10 kV and configurations of conduction charging and induction charging are utilized. Consequently, the electrostatic removal efficiency of 501 increases about 30% with the applied voltage of ${\pm}10kV$ but is independent of polarity of the applied voltage. It Is also found that the conduction charging configuration results in higher efficiency of $SO_2$ removal that the induction charging configuration. Finally, the effect of slurry temperature on $SO_2$ removal is studied. The temperature influences on the electrostatic removal efficiency of $SO_2$.