• 제목/요약/키워드: Spray Droplets

검색결과 413건 처리시간 0.025초

루프소기형태의 2행정기관에서 분사압력 및 분사각도에 따른 분무특성 연구 (Effects of Injection Pressure and Injection Angle on Spray Characteristics in Loop Scavenged Type 2-stroke Engines)

  • 채수;유홍선
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.165-176
    • /
    • 1996
  • The flow field and spray characteristics for loop scavenged type 2stroke engine having pancake shape was numerically computed using KIVA-Ⅱ code. The cylinder has 1intake port, 2side intake ports and 1exhaust port with induced flow angle 25 deg. In engine calculation, the chop techniques is used to strip or add planes of cells across the mesh adjacent to the TDC and the BDC(ports parts) for preventing the demand of exceed time during the computation, providing a control on cell height in the squish region. The modified turbulent model including the consideration of the compressibility effect due to the compression and expansion of piston was also used. The case of 25 deg.(injection angle) which is opposite to scavenging flow direction shows better the distribution of droplets and the evaporation rate of droplets compared to other cases(0 deg., - 25 deg.). When injection pressure was increased, the spray tip penetration became longer. When injection pressure was increased, the interaction between the upward gas velocity and spray droplets strongly cause. Thus the breakup of droplets is strongly occurred and the evaporation rate of droplets was found to be better.

  • PDF

스프링클러 분무 해석에 영향을 미치는 통계적액적군집의 영향 (Effect of the Statistical Droplet Parcel on Numerical Simulation of Sprinkler Spray)

  • 김성찬;이상우;박원주
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 추계학술논문발표회 논문집
    • /
    • pp.363-370
    • /
    • 2008
  • The present study has been performed to investigate the effect of statistical number of droplets on the simulation of the sprinkler spray using fire field model. In order to simulate the sprinkler spray characteristics, the present study uses NIST Fire Dynamics Simulator version 5.2. A group of Lagrangian particle with similar droplet characteristics, such as diameter, velocity, temperature and so on, is represented by parcel concept to decrease the total number of droplets tracked in the simulation. The present study introduces a new parameter to represent the ratio between real number of droplets and computational parcels. The dependency of the number of parcels on the fire suppression characteristics and spray patterns is quantitatively examined for different ratio between the real number of droplets and computational parcels.

  • PDF

액적의 리바운드 모션에 주목한 분무냉각 막 비등 열전달 모델 (Film Boiling Heat Transfer Model of Spray Cooling Focusing on Rebound Motion of Droplets)

  • 김영찬
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.287-293
    • /
    • 2005
  • In the present study, to determine the flow rate of droplets supplied to heat transfer surface after (j-1)th rebound, $D_X[j{\ge}2]^{\ast}$, it was assumed that the rebound droplets are distributed according to the Gaussian distribution from 0 to L, in which the flight distance L is determined by maximum flight distance $L_{max}$. We also assumed that $L_{max}$ is dependent on the air flow velocity and mean size of droplets. The local heat flux of a dilute spray in high temperature region was predicted using the newly evaluated $D_X[j{\ge}2]^{\ast}$. In addition, the predicted results by the present model were compared with the existing experimental data.

PFI용 2홀 2분무 인젝터의 비정상 분무 특성 (Unsteady spray characteristics of two-holes two-sprays type injectorin PFI gasoline engine)

  • 김범준;이재호;조대진;윤석주
    • 한국분무공학회지
    • /
    • 제10권1호
    • /
    • pp.43-52
    • /
    • 2005
  • The effect of fuel injection spray on engine performance has been known as one of the major concerns for improving fuel economy and reducing emissions. In general, reducing the spray droplet size could prevent HC emission in gasoline engine. As far as PFI (Port Fuel Injection) gasoline engine is concerned, the mixture of air and fuel may not be uniform under a certain condition, because breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve. This study, by constituting PFI gasoline spray system, was performed to study the transient spray characteristics and dynamic behavior of droplets from 2hole 2spray type injector used in DOHC gasoline engine. Mean droplet size and optical concentration in accordance with various conditions were measured by LDPA and CCD camera. Through this study, the variation of drop size and optical concentration could be used for understanding the behavior of unsteady spray was declared and the existing the small droplets between each pulse spray could be estimated caused to the development of wall film was conformed.

  • PDF

PDPA계측에 의한 다공 디젤 노즐의 분무 미립화 특성에 관한 연구 (A Study on the Spray Atomization Characteristics of a Multi-Hole Diesel Nozzle using PDPA System)

  • 이지근;오제하;강신재;노병준
    • 한국분무공학회지
    • /
    • 제4권1호
    • /
    • pp.45-54
    • /
    • 1999
  • The spray characteristics of a direct injection multi-hole diesel nozzle having the 2-spring nozzle holder were investigated by using the image processing system and a PDPA(phase Bowler particle analyzer) system. The spray tip penetration, the spray angle, and the droplet diameter and velocity with the variation of the pump speed, injection quantity were measured. From, the experiments, we know that there are small droplets which are not to be detected with spray image around the leading edge of the spray. In order to represent the mean characteristics of the intermittent spray very well, it is very important to set the time windows accurately. From the measurements along the axis of the spray, close to the nozzle, the initially injected droplets are overtaken by droplets that follow them. And also there are the maximum axial mean velocity and SMD at the following part of the leading edge of the spray.

  • PDF

직접분사방식 추력기 노즐오리피스로부터 발생하는 분무입자의 발달특성 (Evolutionary Feature of Spray Droplets Exiting from a Direct-Injection Type Thruster Nozzle-Orifice)

  • 김진석;정훈;김정수;박정;김성초
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.149-152
    • /
    • 2009
  • 직접분사방식 추력기 노즐오리피스로부터 분사되는 분무입자의 발달특성을 연구하기 위해 분무의 다양한 위치에서 평균속도, 직경, 그리고 부피유속과 같은 분무특성인자들을 측정한다. 실험 결과로부터, 고속의 큰 직경을 갖는 분무 입자들이 주변 공기로의 운동량 손실로 인해 하류로 이동함에 따라 저속의 작은 입자로 분열한다. 또, 분무 확산 및 분산에 의해 높은 부피유속의 영역이 반경방향으로 넓게 확장된다.

  • PDF

GDI 엔진 인젝터의 연료 분무 거동 및 액적 분포 특성 (Spray Behaviors and Characteristics of Droplet Distribution in GDI injector)

  • 김민규;이창식;이기형;진 다시앙
    • 한국분무공학회지
    • /
    • 제6권2호
    • /
    • pp.16-21
    • /
    • 2001
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline swirl injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplets were measured by the phase Doppler particle analyzer system. The macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 7 and 10 MPa of injection pressure under different spray cone angle. The results of this work show that the geometry of injector was more dominant over the macroscopic characteristics of spray than the fuel injection pressure and injection duration. As for the atomization characteristics, the increase of injection pressure resulted in the decrease of fuel droplet diameter and the atomization characteristics differed as to the spray cone angle. The most droplets had under $25{\mu}m$ diameter and for the large droplets(upper $40{\mu}m$) as the spray grew the atomization presses were very slow. Comparison results between the measured droplet distribution and the droplet distribution functions revealed that the measured droplet distribution is very closed to the Normal distribution function and Nukiyama-Tanasawa's function.

  • PDF

증발디젤분무의 공간적 구조해석에 관한 기초 연구 (Basic Study on the Spatial Structure Analysis of the Evaporative Diesel Spray)

  • 염정국
    • 동력기계공학회지
    • /
    • 제14권3호
    • /
    • pp.5-12
    • /
    • 2010
  • The purpose of this study is to analyze heterogeneous distribution of branch-like structure at downstream region of inner spray. The previous many studies about diesel spray structure have yet stayed in the analysis of 2-D structure, and there are very few of informations which are concerned with 3-D analysis of the structure. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray, and also the combustion characteristics of the diesel engines. Therefore, in order to investigate 3-D structure of evaporative spray the laser beam of 2-D plane was used in this study. Liquid fuel was injected from a single-hole nozzle (l/d=5) into a constant-volume vessel under high pressure and temperature in order to visualize the spray phenomena. The incident laser beam was offset on the central axis. From the images analysis taken by offset of laser beam, we examine formation mechanism of heterogeneous distribution by vortex flow at the downstream of the diesel spray. As the experimental results, the branch-like structure formed heterogeneous distribution of the droplets consists of high concentration of vapor phase in the periphery of droplets and spray tip of branch-like structure. Also the 3-D spatial structure of the evaporative diesel spray can be verified by images obtained from 2-D measurement methods.

고온벽과 충돌하는 나노유체 액적 거동에 관한 연구 (A Study on the Behavior of Nano-fluid Droplet Impacting Upon a Hot Surface)

  • 김으뜸;박인한;배녹호;강보선
    • 한국분무공학회지
    • /
    • 제20권1호
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, the behavior of water or nanofluid droplets impacting upon a hot surface was investigated by visualization of impacting phenomena with time-delayed photographic technique. Changing the mass ratio of nanofluid and the temperature of the heated surface, the characteristics of the spreading behavior and the diameter of spreading liquid film was compared between water and nanofluid droplets. The impacting droplet spreaded as a liquid film after impact and nanofluid droplets spreaded more widely than water droplets. After reaching the maximum diameter, water droplets shrinked more than nanofluid droplets. Based on this, the heat transfer area from a hot surface to impacting nanofluid droplets would be wider than that of impacting water droplets. Considering individual impacting droplet only, spray cooling using nanofluid would be better than using water.

극초고압 디젤분무의 충격파가 디젤분무특성에 미치는 영향 (Effect of Shockwave on Diesel Spray Characteristics in Ultra High Pressure Injection)

  • 정대용;이종태
    • 한국분무공학회지
    • /
    • 제10권1호
    • /
    • pp.10-16
    • /
    • 2005
  • To investigate the effect of shockwave on diesel spray characteristics under ultra high pressure injection, the velocity of spray tip and shock wave were investigated using the visualization of spray by schlieren method. Spray characteristics such as the spray radius, height, and droplets size were analyzed. It is found in this study that shock wave, produced by ultra high injection pressure, propagates faster than spray tip. Spray radius of right side of nozzle tip was shorter than that of left side and spray height of right side of nozzle tip was thicker than that of left side. Droplets sue was increased at 414MPa in injection pressure because of pressure gradient between inner and outer of tile spray caused by shockwave.

  • PDF