• 제목/요약/키워드: Spray Droplet

검색결과 611건 처리시간 0.022초

초기 직경이 n-heptane 액적 연소 특성에 미치는 영향 (Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet)

  • 서현규
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.94-99
    • /
    • 2013
  • The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

방해물이 존재하는 평판 위 충돌 액적 거동에 관한 연구 (A Study on the Behavior of an Impacting Droplet on a Wall Having Obstacles)

  • 양우종;강보선
    • 한국분무공학회지
    • /
    • 제17권1호
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper an experimental study is presented to investigate the effect of a step edge and a stationary droplet on the dynamic behavior of impacting droplet on a wall. The main parameters are the distance from the edge and the center-to-center distance between two droplets. Photographic images are presented to show coalescence dynamics, shape evolution and contact line movement. The emphasis is on presenting the spreading length of droplet for the step edge and two coalescing droplets along their original centers. It is clarified that the droplet exhibits much different dynamic behavior depending on the location of the step edge. The momentum of impacting droplet was better transferred to the stationary droplet as the center- to-center distance between two droplets was reduced, which results in more spreading of coalescing droplet.

가솔린 화재의 소화를 위한 수분무의 특성 (Characteristics of Water Spray for Extinguishment of Gasoline Pool Fire)

  • 장용재;김명배
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.129-135
    • /
    • 1995
  • This study discribes characteristics of water spray for extinguishment of gasoline pool fire. Experiments are carried out for the gasoline pool fire in a small tank with a diameter of 150mm and a height of 8mm. Droplet size, spray pressure, amount of water which reaches the flame base and velocity of water spray are measured to find extinguishment conditions and air entrainment due to the water spray is visualized. Critical conditions of water spray for extinguishment of gasoline pool fire is quantitatively shown.

  • PDF

주변난류유동이 단일액적의 증발에 미치는 영향에 대한 수치적 연구 (Numerical Study for Ambient Turbulence Effects on a Single Droplet Vaporization)

  • 박정규
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2699-2709
    • /
    • 1995
  • This investigation reports on the study of the ambient turbulent effects on the droplet vaporization in the fuel spray combustion. For tractability, this discussion considers a single droplet in an infinite turbulent flow. In this numerical study, the low-Reynolds-number version of k-.epsilon. turbulence model was used to represent the turbulence effects. The set of two-dimensional conservation equations which describe the transport phenomena in turbulent flow using the mean flow quantities including the droplet internal laminar motion, are solved numerically with the finite difference procedure of Patankar(SIMPLER). The evaluation of the computational model is provided by two limiting cases: turbulent flow over the solid sphere and the laminar flow over a liquid drop. The results show that the turbulence effects are noticeable for the vaporization at high turbulence intensity (10-50%) which is encountered in a typical spray. The magnitude of turbulence effects mainly depends on the turbulent intensity. These effects are not sensitive to the Reynolds number in the range of 50 to 200, ambient temperature in the range of 700 to 1000.deg. K and the volatility.

MAG 용접의 스패터 발생 및 용적이행현상에 미치는 Si의 영향 (Effect of Si on Spatter Generation and Droplet Transfer Phenomena of MAG Wwlding)

  • 안영호;이종봉;엄동석
    • Journal of Welding and Joining
    • /
    • 제17권3호
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of Si content in welding wires on spattering characteristics and droplet transfer phenomena was studied. In MAG welding using 80% Ar-20% $CO_2$ shielding gas, spattering characteristics and droplet transfer phenomena were varied with Si content of wire. With increasing Si content, the spattering ratio and the ratio of large size spatter $(d\geq1.0mm)$ were increased. The increase of Si content in molten metal made surface tension increase due to reduction of oxygen content, which resulted from deoxidizing action of silicon. The increase of surface tension resulted in unstable transfer phenomena and arc instability in both short circuit and spray region. With changing Si content of wire, spattering characteristics and droplet transfer phenomena was directly influenced by the variation of surface tension, compared with the effect of arc stability.

  • PDF

An Experimental Study on Angled Injection and Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.486-491
    • /
    • 2008
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomizer internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD(Sauter Mean Diameters) distribution by using PLLIF(Planar Liquid Laser Induced Fluorescence) technique. The objectives of this research are getting a droplet distribution and drop size measurement of each condition and compare with the other flows effect. As the result, This research have been showed the droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects and normalized distance from the injector exit length.(x/d, y/d)There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

Methanol 연료 액적의 연소 특성에 관한 연구 (Study on the Combustion Characteristics of Methanol Fuel Droplet)

  • 서현규
    • 한국분무공학회지
    • /
    • 제19권3호
    • /
    • pp.109-114
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet burning, extinction process and flame behavior of methanol fuel and improve the ability of theoretical prediction of these phenomena. For the improved understanding of these phenomena, this paper presents the experimental results on the methanol droplet combustion conducted under various initial droplet diameters ($d_0$), ambient pressure ($P_{amb}$), and oxygen concentration ($O_2$) conditions. To achieve this, the experimental study was conducted in terms of burning rate (K) with normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

고온 고압 유동장에서 햅탄 액적의 기화 특성 (Characteristics of Heptane Droplet Vaporization in High-Pressure and Temperature Flow Field)

  • 고정빈;구자예
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.83-89
    • /
    • 2004
  • Vaporization characteristics of a liquid heptane droplet in high-pressure and temperature flow field are numerically studied. Variable thermodynamic and transport properties and high-pressure effects are taken into account in order to consider real gas effects. Droplet Vaporization in convective environments was investigated on the basis of droplet vaporization in quiescent and convective environment. In quiescent environments, droplet lifetime is directly proportional to pressure at the subcritical temperature range but it is inversely proportional to pressure at the supercritical temperature range. In convective environment, droplet deformation becomes stronger by increasing Reynolds number due to increase of velocity while droplet deformation is relatively weak at a higher pressure for the same Reynolds number cases.

  • PDF

붐방제기 살포장치의 설계요인 구명을 위한 실험적 연구(II) -노즐의 분무유형 및 벼의 피복특성- (Design Factors of Boom Sprayer(II) -Spray Droplet Size and Coverage Characteristics on Rice Plants-)

  • 정창주;김학진;이중용;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.313-322
    • /
    • 1995
  • This study was conducted to find the design factors of spraying device of the boom sprayer for low volume application. Specific objectives of this study were 1) to select proper nozzles for broadcast spraying and row crop spraying by the nozzle spray characterisic experiment, and 2) to investigate the coverage characteristic of rice plant at the row crop spraying. The results of this study are summarized as follows. (1) From the tested results on the droplet diameter spectrum and spray pattern the standard flat-fan nozzle and drift guard nozzle were judged as appropriate for the broadcasting. Even flat-fan nozzle showed similar span values to standard flat-fan nozzles and drift guard nozzle : however, the nozzles were found to be inappropriate for broadcasting because of their spray pattern. Hollow cone nozzle showed relatively small span values and uniform spray pattern. (2) For the upper and lower sides of the rice plants, coverage rates of even flat-fan nozzles and hollow cone nozzles were maximum at the second row, but decreased rapidly after the third row. For the middle side of the rice plants, coverage rates of them were maximum at the first row, but decreased rapidly. When one nozzle was tested, C.V. values were in the range of 90~160% and 60~160% on entire heights of rice plant for even flat-fan nozzles and hollow cone nozzles respectively. C.V. values at other parts were poor. Spray coverage rate at the middle part was improved by overlapping the nozzles whereas there was little difference on the upper and lower part of rice plants. (3) For spraying lower part of rice plant between rows, even flat-fan nozzles and hollow cone nozzle were judged as appropriate, but in order to ensure the uniform coverage, distance between nozzles, recommended to be less than 90cm.

  • PDF

디젤 고압 분사 시스템에서 디젤-에탄올 혼합연료의 분무 및 미립화 특성에 관한 연구 (A Study on the Spray-atomization Characteristics of Diesel-ethanol Blended Fuels in a High Pressure Diesel Injection System)

  • 김세훈;박수한;이창식
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.80-87
    • /
    • 2010
  • The purpose of this paper is to analyze the effects of ethanol blending ratio and fuel temperature in diesel-ethanol blended fuel on the spray-atomization characteristics in a high pressure common-rail injection system. In this work, a diesel fuel and three blended fuels were used as test fuels. Blended fuels were made by blending ethanol with a purity 99.9% to diesel fuel, from 0% to 30%. In order to keep diesel-ethanol blending stability, 5% of biodiesel fuel as volumetric ratio was added into test fuels. The fuel temperature was controled in steps with 40K, from 290K to 370K. Macroscopic spray characteristics were investigated by analyzing the spray tip penetration and spray cone angle through spray images obtained from visualization system. In addition, in order to study microscopic spray characteristics of ethanol blended fuels, the droplet diameter, was analyzed using the droplet measuring system. It is revealed that the spray tip penetration is similar regardless of ethanol blending ratio. As ethanol blending ratio is increased, the spray cone angle becomes wider. It is shown that the spray cone angle is affected by low viscosity and density of ethanol. As the fuel temperature increases, the spray tip penetration and spray cone angle become shorter and narrower respectively. The SMD of ethanol blending fuels is smaller than that of diesel fuel because of low viscosity and surface tension of ethanol.