• Title/Summary/Keyword: Spray Coverage

Search Result 32, Processing Time 0.02 seconds

NUMERICAL STUDY ON THE OPTIMAL DESIGN OF SPRAY SYSTEM IN PACKED BED SCRUBBER (충진층식 스크러버의 스프레이 시스템 최적 설계에 대한 수치해석적 연구)

  • Ko, S.W.;Ro, K.C.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.28-34
    • /
    • 2007
  • This study evaluates the performance of the packed bed scrubber and proposes the optimization of spray system for improvements of collection efficiency. The packed bed scrubber is used primarily in the semiconductor manufacturing process. The mean diameter of entering solid particles in scrubber is the submicron. The impaction between water droplets and solid particles is an important factor in removing the solid particles. Thus, the coverage area of spray system influences on the collection efficiency. The collection efficiency of a single droplet is calculated through the mathematical model and numerical calculations are performed for coverage area for each nozzle type (Droplet diameters: 500, 319.5, $289.5{\mu}m$) and injected directions (0, 15, $30^{\circ}$). In case of nozzle type 3, the collection efficiency of a single droplet is highest but the collection efficiency of spray system has lowest value because the ratio of flow rate between the gas and water is below 0.1. The results show the coverage area ratio is about 85% in the case of nozzle type 3 and downward sirection $15^{\circ}$. It was shown that a coverage area increase by two times than an existing spray system. In simulation of demister, collection efficiency by demister is predicted about 80% and the pressure drop in demister is below 3.5 Pa.

Design Factors of Boom Sprayer(II) -Spray Droplet Size and Coverage Characteristics on Rice Plants- (붐방제기 살포장치의 설계요인 구명을 위한 실험적 연구(II) -노즐의 분무유형 및 벼의 피복특성-)

  • 정창주;김학진;이중용;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.313-322
    • /
    • 1995
  • This study was conducted to find the design factors of spraying device of the boom sprayer for low volume application. Specific objectives of this study were 1) to select proper nozzles for broadcast spraying and row crop spraying by the nozzle spray characterisic experiment, and 2) to investigate the coverage characteristic of rice plant at the row crop spraying. The results of this study are summarized as follows. (1) From the tested results on the droplet diameter spectrum and spray pattern the standard flat-fan nozzle and drift guard nozzle were judged as appropriate for the broadcasting. Even flat-fan nozzle showed similar span values to standard flat-fan nozzles and drift guard nozzle : however, the nozzles were found to be inappropriate for broadcasting because of their spray pattern. Hollow cone nozzle showed relatively small span values and uniform spray pattern. (2) For the upper and lower sides of the rice plants, coverage rates of even flat-fan nozzles and hollow cone nozzles were maximum at the second row, but decreased rapidly after the third row. For the middle side of the rice plants, coverage rates of them were maximum at the first row, but decreased rapidly. When one nozzle was tested, C.V. values were in the range of 90~160% and 60~160% on entire heights of rice plant for even flat-fan nozzles and hollow cone nozzles respectively. C.V. values at other parts were poor. Spray coverage rate at the middle part was improved by overlapping the nozzles whereas there was little difference on the upper and lower part of rice plants. (3) For spraying lower part of rice plant between rows, even flat-fan nozzles and hollow cone nozzle were judged as appropriate, but in order to ensure the uniform coverage, distance between nozzles, recommended to be less than 90cm.

  • PDF

Coverage Distribution of Blasted Droplets by an Orchard Sprayer (과수방제기 살포입자의 도포율 분포특성)

  • 구영모;김상헌;신범수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.355-362
    • /
    • 2001
  • Uniform application of agri-chemicals will improve orchard pest management. An air-blast(orchard) sprayer designed for vineyards has been used: however, few research on the uniformity and coverage of the sprays has been reported. Distributions of spray coverage were measured with artificial targets and analyzed to enhance the efficiency of spray application. A structure was built to place water sensitive papers, sampling spray droplets blasted from the orchard sprayer. The sampling cards were collected from five directions at three distances (2.5, 3.0 and 3.5m) for two fan speeds (2,075 and 3,031 rpm), and analyzed using an image analysis system. The distribution of the coverage percent area did not follow the wind velocity pattern. The coverage by the low fan speed was more uniform and higher than that by the higher fan speed. The coverage percent area decreased with an increase of distance. The distribution of droplet density was similar to that of coverage. However, the coverage contribution by smaller droplets became more significant as the distance increased. The upward blasting distance was limited within 3m, but the limit to the ground level was expanded the distance more than 3.5m because of the concentrated droplets.

  • PDF

Analysis of spraying performance of agricultural drones according to flight conditions

  • Dae-Hyun Lee;Baek-Gyeom Seong;Seung-Woo Kang;Soo-Hyun Cho;Xiongzhe Han;Yeongho Kang;Chun-Gu Lee;Seung-Hwa Yu
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.427-435
    • /
    • 2023
  • This study was conducted to evaluate the spraying performance according to the flight conditions of agricultural drones for the development of a variable control system. The analyzed flight conditions comprised six factors: spraying direction, flight speed, altitude, wind speed, wind direction, and rotor rotational speed. The ratio of the area sprayed on the water-sensitive paper was used as the coverage, and the distribution and amount of the coverage were evaluated. The coverage distribution based on the distance from the drone was used to evaluate a spray pattern, and the distribution was expressed as a Gaussian function approximation. In addition, the probability distribution based on coverage was expressed as the cumulative probability via Gamma function approximation to analyze the spraying efficiency in the target area. The results showed that the averaged coverage decreased significantly as the flight speed and wind speed increased, and the wind direction changed the spray pattern without a coverage decrease. This study contributes to the development of a control technique for the precision control system of agricultural drones.

A Study for Characteristics of Geofiber Reinforced Soil System Practiced on Stone Gabion Bank of River (하천 돌망태 호안에 적용된 토목섬유보강토공법의 녹화 특성)

  • Jeong, Dae-Young;Kim, Jae-Hwan;Shim, Sang-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.81-90
    • /
    • 2008
  • Recently, geofiber(polyester) reinforced soil was added on soil-seed mixture spray to control erosion and to improve vegetation growth on rocky slope sites. This research was conducted to compare vegetation effects and soil hardness on three types of soil-seed mixture spray on stone gabion river bank [A type : soil-seed mixture spray underlying 30cm thick sand with geofiber(geofiber reinforced soil system), B type : soil-seed mixture spray underlying 30cm thick sand without geofiber, C type : soil-seed mixture spray]. Evaluation were made concerning vegetation coverage, soil hardness and moisture content. The results of this study showed that A type system was effective for the growth of vegetation and soil hardness when compareed to B type and C type. A type and B type showed higher covering rate than C type on stone gabion river bank, and especially A type showed the highest covering rate. Soil hardness and water content were high on A type vegetation system compared to B type and C type. We noted that high soil hardness and high moisture content with geofiber(geofiber reinforced soil system) were effective both to control erosion from water current impact and to be high coverage and species of vegetation on stone gabion river bank.

An improvement of sprinkler head design using computational fluid dynamics (전산유체역학을 이용한 스프링클러헤드의 형상 개선)

  • Park, Dan-A
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.606-611
    • /
    • 2015
  • 초기 화재 진압을 위해 사용되는 스프링클러(sprinkler) 설비는 스프링클러헤드의 형태에 따라 살수 분포가 달라진다. 화점의 발생 위치는 특정하기 어려우므로 스프링클러의 살수범위(spray coverage)가 넓게 퍼지는 형태가 되는 것이 확률적으로 가장 큰 효율성을 가진다. 본 연구에서는 EDISON_전산열유체 시스템의 다상유동 해석자를 활용하여 스프링클러헤드의 형태에 따라 살수각과 국부 유동장을 분석하였다. 3차원 형상을 가지는 스프링클러헤드 형상을 2차원 단면으로 나누어 해석하였으며 프레임(frame)과 반사판(deflector)의 형상에 따른 유동장의 변화를 살펴보았고 살수각(spray angle)을 정량적으로 나타내었다. 최종적으로 최대 최소의 살수각을 갖는 2차원 스프링클러헤드를 형상화하였고 이를 중첩하여 살수 범위를 넓게 갖는 스프링클러헤드를 3차원 모델링하였다.

  • PDF

The Analysis of Herbicide Penetration with Spray Deposit Characteristics on Plant Leaves (잎 표면의 분무입자 부착특성에 따른 제초제 침투성 분석)

  • 장영창
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.287-292
    • /
    • 2000
  • The herbicide penetration on weed leaves was spatially analyzed by using chlorophyll fluorescent emission and machine vision technique. Velvetleaf and metribuzin were used as experimental materials in the study. The herbicide spray images were obtained by a combinaton of a fluorescent dye and a UV lighting system. The herbicide penetration was analyzed by means of detecting chlorophyll fluorescent emission under blue-green lighting. According to the experiment results, the number and the size of spray droplets decreased with coverage increasing. The herbicide penetrated mainly along leaf veins and the time for complete penetration over the whole leaf was approximately 100 minutes after herbicide spraying. When the coverage of herbicide droplets on the surface of leaves increased, the speed of herbicide penetration also increased. This study suggested a way of characerizing herbicide spatial penetration and distribution in leaves.

  • PDF

Changing of Vegetation Coverage through Elapsed Years on Cutting Slope in Forest Roads (시간경과에 따른 임도 절토비탈면의 식생피복도 변화)

  • Jeon, Kwon-Seok;Ma, Ho-Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.14-25
    • /
    • 2004
  • The purpose of this study was investigated to the change of vegetation coverage by elapsed years on the cut slope of forest road in Jinju-si. The results obtained could be summarized as follows; The plant coverage on the cut slope of forest road was decreased hastily in first and second year after seeding. The plant coverage on the cut slope of forest road was increased as growth of seed-sprayed from third year. But the plants were began to competition with between sprayed seeds and invaded plants from third to fifth year after seed-spray. The numbers of invading plants were gradually increased as 581 individuals from sixth year after seed-spray. The cut slopes of the forest roads turned to a good site condition for growing of invasion plants. And also the total coverage on cut slope of forest roads by invading of surrounding plants was increased more. It showed that plant invasion on cut-slopes of forest roads would be mostly influenced by surrounding plants. The number of surrounding plants on the cut-slopes of forest roads was 59 species, and the number of invading plants showed 65 species. The invading species were high in order of Boehmeria tricuspis, Oplismens undulatifolius, Miscanthus sinensis var. purpurascens, Erechtites hieracifolia and Artemisia princeps var. Orientalis In the stepwise regression analysis, main factors affecting the coverage of vegetation on the cut-slopes of forest road showed in order of elapsed years, gravel contents(30~50%), middle, sandy loam, sandy clay-loam, soil hardness, aspect(NS), concave(凹) type and gravel contents(15~30%).

Ultrasonic Sensor Controlled Sprayer for Variable Rate Liner Applications (초음파센서를 이용한 변량제어 스프레이어)

  • Jeon, Hong-Young;Zhu, Heping
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • An experimental variable rate nursery sprayer was developed to adjust application rates for canopy volume in real time. The sprayer consisted of two vertical booms integrated with ultrasonic sensors, and variable rate nozzles coupled with pulse width modulation (PMW) based solenoid valves. A custom-designed microcontroller instructed the sensors to detect canopy size and occurrence and then controlled nozzles to achieve variable application rates. A spray delivery system, which consisted of diaphragm pump, pressure regulator and 4-cycle gasoline engine, offered the spray discharge function. Spray delay time, time adjustment in spray trigger for the leading distance of the sensor, was measured with a high-speed camera, and it was from 50 to 140 ms earlier than the desired time (398 ms) at 3.2 km/h under indoor conditions. Consequently, the sprayer triggered 4.5 to 12.5 cm prior to detected targets. Duty cycles of the sprayer were from 20 to 34 ms for senor-to-canopy (STC) distance from 0.30 to 0.76 m. Outdoor test confirmed that the nozzles were triggered from 290 to 380 ms after detecting tree canopy at 3.2 km/h. The spray rate of the new sprayer was 58.4 to 85.2% of the constant application rate (935 L/ha). Spray coverage was collected at four areas of evergreen canopy by water sensitive papers (WSP), and ranged from 1.9 to 41.1% and 1.8 to 34.7% for variable and constant rate applications, respectively. One WSP area had significant (P < 0.05) difference in mean spray coverage between two application conditions.

Uniformity Analysis of Unmanned Aerial Application with Variable Rate Spray System (무인항공 변량방제 시스템의 살포 균일도 분석)

  • Koo, Young Mo;Bae, Yeonghwan
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.111-125
    • /
    • 2018
  • In this study, we evaluated the uniformity of deposition rate and particle size distributions of the variable rate application technique using the unmanned rotorcraft by measuring the spray pattern according to path location in the range of spraying flight. The coefficient of variation (CV) of the lateral coverage rate for the overlapped distribution with the spray swath of 3.6 m in both guidance and auto-pilot flight modes maintaining constant flight speed was about 30% and the CV of the coverage rate by the flight path location was extremely small. Therefore, it was assessed that the variable rate application technology compensating for the variation of ground speed was superior in terms of spray uniformity. In addition, the droplet size distributions in both volume median diameter(VMD) and number median diameter(NMD) were adequate for aerial application and uniform in terms of lateral distribution. Thereafter, we intend to contribute to a precise application on small-scaled fields using the unmanned agricultural rotorcraft by the variable rate application.