• 제목/요약/키워드: Spray Characteristics

검색결과 1,869건 처리시간 0.025초

고온고압 환경에서 케로신 연료의 물성치변화 및 분무특성연구 (Thermal Properties and Spray Characteristics of Kerosene Fuel at High Temperature and Pressure)

  • 변용우;손민;구자예
    • 한국분무공학회지
    • /
    • 제15권2호
    • /
    • pp.94-99
    • /
    • 2010
  • The object of this investigation is to study the thermal properties and spray characteristics of kerosene fuel in high temperature and pressure conditions. In order to investigate the thermal properties and spray characteristics, KIVA3 and SUPERTRAPP have been used at the same time. The thermal properties of kerosene has been calculated in high temperature and pressure condition using SUPERTRAPP. The study of spray characteristics has been conducted at both original properties of KIVA3 and calculated properties. The evaporation rate was increased in proportion to pressure when the calculated properties were used. However, the effect of pressure was not shown in the case of using original properties. So the calculated properties are more effective than original properties in high temperature and high pressure condition.

The Influence of Fuel Spray Characteristics on the Engine Performance and Emission in the Direct Injection Type Diesel Engine

  • Bakar Rosli Abu;Lee Chang-Sik
    • 한국분무공학회지
    • /
    • 제2권2호
    • /
    • pp.43-50
    • /
    • 1997
  • The purpose of this investigation is to carry out, the influence factor on the fuel spray characteristics for improve the engine combustion performance and exhaust omission in direct injection type diesel engine. The fuel properties, fuel spray structure and the shape or the piston surface of diesel engine play an important role of engine combustion process and exhaust emission. In order to obtain the effect of using auxiliary chamber and emulsified fuel on the fuel spray characteristics the experiment un conduct with single cylinder direct injection type diesel engine to examine the engine performance and gas emission. The results of this investigation showed that the increase auxiliary chamber volume and emulsified fuel give an effect on the fuel spray characteristics by reduced the concentration of nitric oxide emission in the combustion chamber. Also it can improve the combustion characteristics such as cylinder pressure, rate of pressure rise and rate of heat release.

  • PDF

BOS법을 이용한 함산소 연료들의 충돌분무특성에 관한 실험적 연구 (Experimental Investigation of Impinged Spray Characteristics of Oxygenated fuels Using BOS Method)

  • 방승환
    • 한국분무공학회지
    • /
    • 제25권3호
    • /
    • pp.111-118
    • /
    • 2020
  • This paper describes the effect of DME, biodiesel blended fuels on the macroscopic spray characteristics in a high pressure diesel injection system using Background Oriented Schlieren (BOS) method. The BOS method for visualization of impingement evaporation sprays to analyze macroscopic spray properties and evolutionary processes. In this work, the blending ratio of DME in the blended fuel are 0, 50, 100% by weight ratio. In order to investigate the macroscopic impinged spray characteristics under the various injection parameters and blending ratio. In this work, a mini-sac type single-hole nozzle injector with nozzle hole was length 0.7 mm and diameter of 0.3 mm was used. According to the result, the spray area of the collision wall increased as the DME mixing ratio increased, and the evolutionary pattern showed a stepwise increase due to the collision effect of the wall. Also, results of impinged spray area were increased according to increasing injection pressure.

가스터빈 연소기용 대향류 선회기의 분무 특성 (Spray Characteristics of a Pilot Nozzle in a Counter-Swirl Type Gas Turbine Combustor)

  • 고영성;김명환;김동진;민대기;정석호
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.42-49
    • /
    • 1996
  • The structure of sprays from a simplex type pilot nozzle atomizer is studied experimentally by measuring velocities, Sauter mean diameter, and number density. Interaction of the spray with gas-phase flow field generated from a 1 MW range industrial gas turbine combustor adopt ing a counter-swirler is investigated. Various spray behaviors are reported. Especially interest ing characteristics are the tangential motion of the spray and of the spray with swirl interaction. It shows a Rankine combined vortex type of velocity characteristics, having linear velocity profile inside the inner core whole small particles exist and rapidly decreasing velocity profiles outside. Interacting spray has relatively uniform number density profiles compared to the nozzle spray itself.

  • PDF

직분식 가솔린기관 인젝터의 연료 분무 특성 (Fuel Spray Characteristics of GDI Injector)

  • 권상일;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.194-201
    • /
    • 2000
  • This paper is intended to analyze the macroscopic behavior and transient atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. Time-resolved droplet axial and radial velocity components and droplet diameter were measured at many probe positions in both axial and radial directions by a two-component phase Doppler particle analyzer (PDPA). In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDI engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

  • PDF

디젤분무특성에 관한 실험적 연구(I) (Experimental Studies on Atomization Characteristics in Diesel Fuel Spray(I))

  • 박호준;장영준
    • 오토저널
    • /
    • 제12권5호
    • /
    • pp.76-84
    • /
    • 1990
  • To study diesel fuel spray behavior, an experimental study was undertaken to investigate injection characteristics in vary ing back pressure and atomization mechanism in a non-evaporating diesel spray. Generally, injection characteristics is the curve of fuel flow plotted against time. The area under this curve is equal to the total quantity of fuel discharged for one injection. The method that measures rate of injection is long tube-type fuel rate indicator. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking high speed camera by the focused shadow photographs. The results show that, at the start of injection, as the injected fuel rushes into the quiescent atmosphere the spray angle becomes large. Finally the spray stabilizes at a constant cone angle. Spray penetration length increases with the injection pressure.

  • PDF

충돌부를 갖는 w-형 디젤엔진 연소실의 분무특성분석 (Analysis of Spray Characteristics in w-shaped Diesel Engine Combustion Chamber with Impingement Lands)

  • 박권하;박대순;김문헌
    • 한국분무공학회지
    • /
    • 제1권4호
    • /
    • pp.40-45
    • /
    • 1996
  • This Paper addresses to spray characteristics in w-shaped diesel engine combustion chamber which has impingement parts for 4 sprays injected from an injector. The two-dimensional shapes have been chosen to avoid the difficulties for analysing the spray dynamics in the real chamber. The simple shapes are reproduced with same geometries in vertical or horizontal sections through the impingement lands. The spray developments are visualized with a high speed drum camera and shadowgraphy optical system, and the droplet sizes are measured by Malvern system. The detailed discussions m made for the two different combustion chamber shapes, which are new w-shape using spray wall impaction and general w-shape. The results show that the spray characteristics of the new shape are superior to those of the general w-shape.

  • PDF

가변 추력용 핀틀 분사기에서 추진제 상에 따른 상압분무 특성 (Effects of Propellant Phases on Atmospheric Spray Characteristics of a Pintle Injector for Throttleable Rocket Engines)

  • 유기정;손민;;김희동;구자예
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.13-19
    • /
    • 2016
  • Atmospheric spray characteristics were experimentally compared between liquid-gas and liquid-liquid sprays of a pintle injector. In order to study spray characteristics, water and air were used as the simulants and the visualization technic was adopted. Spray images were acquired by using a backlight method by a high-resolution CMOS camera. As a result, when the pintle opening distance increased, liquid sheets became unstabled and fluttering droplets increased. In the liquid-gas case, the breakup performance increased as the pressure of gas injected from the annular orifice increased. In the liquid-liquid case, atomization efficiency decreased as the pressure of liquid injected from the annular orifice increased. Spray angles presented a similar trend between two cases. At the same momentum ratio, the spray angle of liquid-liquid case was lower than the angle of liquid-gas case.

ANSYS Fluent를 이용한 와류형 분사기의 분무특성 연구 (A Study on the Spray Characteristics of Swirl Injectors Using ANSYS Fluent)

  • 윤원재;이봄;안규복
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.159-168
    • /
    • 2017
  • Numerical studies on the spray characteristics of closed-type and open-type swirl injectors were conducted using ANSYS Fluent. By changing injection pressures, discharge coefficient and spray angle were calculated using the Reynolds stress BSL turbulent model. The numerical results were compared with previous experimental data to examine their accuracy. For a closed-type swirl injector, spray angles matched well with experimental results and discharge coefficients showed approximately 8% differences. On the contrary, discharge coefficients of an open-type swirl injector were similar with experimental result but its spray angles presented around 15% differences. Though the numerical results were not perfectly consistent with experimental data, it is thought that they could be sufficiently used for analyzing spray characteristics, specially which is hard to be measured from experiments. Numerical simulation with different turbulent models was also performed to examine their effects on the numerical results.

ANALYSIS OF THE SUITABLE INJECTION PRESSURE FOR DIESEL INJECTION WITH HIGH PRESSURE

  • JEONG D. Y.;LEE J. T.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.87-93
    • /
    • 2005
  • Spray patterns were visualized using the shadowgraph method, and the droplet size and velocity were measured using PDPA for high-pressure injections up to 2,600 bars. The spray pattern and spray characteristics, such as penetration, spray width, spray angle, droplet size, injection duration, and droplet velocity, were investigated to determine the suitable injection pressure. Spray penetration, width, angle, and velocity increased continuously up to 2,600 bars with the injection pressure in a high-pressure region. The rate of improvement of the above spray characteristics, however, declined rapidly, when the injection pressure reached 2,000 bars. The injection duration and droplet size generally decreased with the increase in the injection pressure, while the rate of improvement decreased abruptly after 2,000 bars. Consequently, the improvement rate of the spray characteristics became blunt at over 2,000 bars. This means that the suitable injection pressure is around 2,000 bars.