• 제목/요약/키워드: Spray transfer

검색결과 207건 처리시간 0.026초

밀폐형 냉각탑의 열성능 특성에 관한 실험적 연구 (Thermal Performance Characteristics of Closed-Wet Cooling Tower)

  • ;김은필;문춘근;윤정인
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.88-92
    • /
    • 2005
  • The experiment of thermal performance about closed-wet cooling tower was conducted in this study. A closed cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The test section for this experiment has the process that the cooling water flows from the top of the heat exchanger to the bottom side in the inner part of the tube, and spray water flows in the gravitational direction in the outer side. Air comes in direct contact with the spray water at the outer side of the tube while passing from the lower the upper part having a counterflow to the spray water. The heat transfer pipe used in this experiment is a bare-type tube having an outer diameter of 15.88mm. The heat exchanger is consisted of seven rows and fifteen columns. In this experiment, thermal performance of the cooling tower is derived from overall heat transfer coefficients between the process fluid and sprayed water and volumetric overall mass transfer coefficient between sprayed water and air.

  • PDF

용융부의 형상을 고려한 GMA 용접 공정의 금속이행 모델링 (Modeling of Metal Transfer in GMA Welding Process)

  • 이강희;최상균;유중돈
    • Journal of Welding and Joining
    • /
    • 제13권2호
    • /
    • pp.115-121
    • /
    • 1995
  • As the metal transfer in the GMAW process affects the weld quality and productivity, the mechanism of molten formation and detachment has been investigated at various welding conditions. The force balance and pinch instability models have been widely used to analyze the metal transfer in the globular and spray modes, respectively A new approach is proposed in this work by minimizing the energy of molten drop system. Effects of the surface tension, gravity, electromagnetic and drag forces are considered with no presumed molten drop geometry. Effects of various welding conditions on the metal transfer are explained. The results show that the proposed mode can be applied to the globular and spray transfer modes. When compared with other models, results of the proposed model show better agreements with the available experimental data, which demonstrates the validity of the present model.

  • PDF

Calculation of Fuel Spray Impingement and Fuel Film Formation in an HSDI Diesel Engine

  • Kyoungdoug Min;Kim, Manshik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권3호
    • /
    • pp.376-385
    • /
    • 2002
  • Spray impingement and fuel film formation models with cavitation have been developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process was modeled by considering the effects of surface temperature conditions and fuel film formation. The behavior of fuel droplets after impingement was divided into rebound, spread and splash using the Weber number and parameter K(equation omitted). The spray impingement model accounts for mass conservation, energy conservation, and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, momentum, and energy equations along the direction of fuel film thickness. Zero dimensional cavitation model was adopted in order to consider the cavitation phenomena and to give reasonable initial conditions for spray injection. Numerical simulations of spray tip penetration, spray impingement patterns, and the mass of film-state fuel matched well with the experimental data. The spray impingement and fuel film formation models have been applied to study spray/wall impingement in high-speed direct injection diesel engines.

분무동결건조과정의 최적 건조조건 도출에 관한 실험적 연구 (EXPERIMENTAL STUDY OF OPTIMUM DRYING CONDITION IN THE PROCESS OF SPRAY FREEZE DRYING)

  • 박경원;송찬호;송치성
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1321-1326
    • /
    • 2008
  • A study on the heat and mass transfer for the drying time in spray freezing drying process was experimentally presented in this paper. A spray freezing dryer for the production of an inhalable powder medicine is developed and an albumin solution as protein specimen is adopted. The freeze-drying for the albumin solution is tested in three different height of the particles piled up in a tray such as 2 mm, 5 mm, 7 mm, and the drying time is estimated as 10 h, 15 h, 22 h. From this results, the correlation is suggested and the drying time with various height of the particles piled up in a tray can be estimated. The assessment on the drying time is conducted thought a microbalance and the rate of water content is measured. The results based on temperature and weight are compared. The difference of the results happens due to the heat transfer from the lateral side of the vial. It is thought that the better estimation in drying time can be predicted by considering the heat transfer effect.

  • PDF

냉각수온 효과에 따른 고온 강판의 스프레이 냉각 열전달 특성 연구 (Effect of Water Temperature on Heat Transfer Characteristic of Spray Cooling on Hot Steel Plate)

  • 이정호;유청환;박상진
    • 대한기계학회논문집B
    • /
    • 제35권5호
    • /
    • pp.503-511
    • /
    • 2011
  • 수분류 스프레이 냉각은 $900^{\circ}C$ 이상의 고온에서 강판을 냉각하는데 매우 중요한 기술이다. 본 연구는 냉각수온이 고온 강판의 수분류 스프레이 냉각에 미치는 영향을 고찰하였다. 이 때의 열유속은 시편, 카트리지히터, 열전대의 조합으로 고안된 열유속게이지를 제작하여 엄밀하게 측정되었다. 스프레이는 fullcone 노즐로부터 생성되고 냉각실험은 일정한 스프레이 질량유속과 노즐과 표면 사이의 거리 조건에서 수행되었다. 냉각수온의 효과는 $5^{\circ}C$에서 $45^{\circ}C$까지 다섯 가지의 서로 다른 수온에 대한 수분류 스프레이 냉각의 열전달 현상을 비교 및 평가하였다. 여기서 열유속곡선과 열전달계수는 고온 강판의 냉각공정에서 실제 스프레이 냉각을 위한 기본 데이터로 활용될 수 있다.

높은 도착효율을 가지는 회전형 정전 도장기기의 개발 (Development of the Rotary Electrostatic Painting Equipment with High Transfer Efficiency)

  • 이찬;차상원;호광일
    • 한국유체기계학회 논문집
    • /
    • 제7권6호
    • /
    • pp.7-14
    • /
    • 2004
  • A new electrostatic rotary atomizing painting equipment using air turbine was developed for high transfer efficiency. Based on the overall design requirements of painting equipment, basic design specifications of the equipment parts such as air turbine and atomizing disk ate defined from the present conceptual design model. Air turbine is designed with the section profile of NACA airfoil, and its internal flow field is analyzed by commercial CFD code. Atomizing disk is designed to achieve the ligament type spray of paint with the use of visualization technique. Various experiments and tests are conducted to investigate the spray and the transfer characteristics of newly-designed painting equipment, and the measurement results are compared with the those of conventional painting equipments. The comparison results show the present painting equipment is superior to the conventional ones in the aspects of transfer efficiency and coating surface characteristics.

직접분사식 디젤엔진에서의 분무충돌과 연료액막형성 해석 (Simulation of Spray Impingement and Fuel Film Formation in a Direct Injection Diesel Engine)

  • 김만식;민경덕;강보선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.919-924
    • /
    • 2000
  • Spray impingement model and fuel film formation model were developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process were modelled by considering the change of behaviour with surface temperature condition and fuel film formation. We divided behaviour of fuel droplets after impingement into stick, rebound and splash using Weber number and parameter K. Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. A fuel film formation model was developed by Integrating the continuity, the Navier-Stokes and the energy equations along the direction of fuel film thickness. The validation of the model was conducted using diesel spray experimental data and gasoline spray impingement experiment. In all cases, the prediction compared reasonably well with experimental results. Spray impingement model and fuel film formation model have been applied to a direct injection diesel engine combustion chamber.

  • PDF

MAG 용접의 스패터 발생 및 용적이행현상에 미치는 Si의 영향 (Effect of Si on Spatter Generation and Droplet Transfer Phenomena of MAG Wwlding)

  • 안영호;이종봉;엄동석
    • Journal of Welding and Joining
    • /
    • 제17권3호
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of Si content in welding wires on spattering characteristics and droplet transfer phenomena was studied. In MAG welding using 80% Ar-20% $CO_2$ shielding gas, spattering characteristics and droplet transfer phenomena were varied with Si content of wire. With increasing Si content, the spattering ratio and the ratio of large size spatter $(d\geq1.0mm)$ were increased. The increase of Si content in molten metal made surface tension increase due to reduction of oxygen content, which resulted from deoxidizing action of silicon. The increase of surface tension resulted in unstable transfer phenomena and arc instability in both short circuit and spray region. With changing Si content of wire, spattering characteristics and droplet transfer phenomena was directly influenced by the variation of surface tension, compared with the effect of arc stability.

  • PDF

Recent Progress of Spray-Wall Interaction Research

  • Lee Sang-Yong;Ryu Sung-Uk
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1101-1117
    • /
    • 2006
  • In the present article, recent progress of spray-wall interaction research has been reviewed. Studies on the spray-wall interaction phenomena can be categorized mainly into three groups: experiments on single drop impact and spray (multiple-drop) impingement, and development of comprehensive models. The criteria of wall-impingement regimes (i.e., stick, rebound, spread, splash, boiling induced breakup, breakup, and rebound with breakup) and the post-impingement characteristics (mostly for splash and rebound) are the main subjects of the single-drop impingement studies. Experimental studies on spray-wall impingement phenomena cover examination of the outline shape and internal structure of a spray after the wall impact. Various prediction models for the spray-wall impingement phenomena have been developed based on the experiments on the single drop impact and the spray impingement. In the present article, details on the wall-impingement criteria and post-impingement characteristics of single drops, external and internal structures of the spray after the wall impact, and their prediction models are reviewed.

분무열분해법에 의한 $SnO_2$ 박막의 증착 (The Deposition of $SnO_2$ Films by Spray Pyrolysis)

  • 김태희
    • 태양에너지
    • /
    • 제15권2호
    • /
    • pp.91-99
    • /
    • 1995
  • 분무열분해법으로 $SnO_2$ 박막을 증착하여 반응변수들이 증착에 미치는 영향을 연구하였다. 분무용액의 농도가 0.01M인 경우 증착온도가 낮을 때에는 증착과정이 표면반응의 지배를 받으며 증착온도가 증가함에 따라 $400^{\circ}C$까지는 물질전달의 지배율이 증가한다. $400^{\circ}C$ 이상에서는 분무압력이 낮을 때는 물질전달의 지배율이 증가한다. $400^{\circ}C$ 이상에서는 분무압력이 낮을 때는 물질전달에 의해, 분무압력이 높을 때는 표면반응에 의해 지배를 받는다. 분무용액의 농도가 증가함에 따라 증착속도는 증가하였으며 본 실험의 경우 Rideal-Eley 기구에 의해 증착반응이 일어났다. 기판의 온도가 증가함에 따라 증착속도는 증가하다가 $400^{\circ}C$ 이상에서는 균일한 핵생성에 의하여 증착속도는 감소하였다. 분무지속 시간에 비례하여 증착층의 두께는 증가하였으며 기판과 증착층간에는 물리적인 접착을 이루고 있다.

  • PDF