• Title/Summary/Keyword: Spray

Search Result 5,347, Processing Time 0.031 seconds

SPRAY CHARACTERISTICS OF DIRECTLY INJECTED LPG

  • Lee, S.W.;Y. Daisho
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.239-245
    • /
    • 2004
  • It has been recognized that alternative fuels such as Liquid Petroleum Gas (LPG) show less polluting combustion characteristics than diesel fuel. Furthermore, engine performance is expected to be nearly equal to that of the diesel engine if direct-injection stratified-charge combustion of the LPG can be adopted in the spark-ignition engine. However, spray characteristics of LPG are quite different from those of diesel fuel. understanding the spray characteristics of LPG and evaporating processes are very important for developing efficient and low emission LPG engines optimized in fuel injection control and combustion processes. In this study, the LPG spray characteristics and evaporating processes were investigated using the Schlieren and Mie scattering optical system and single-hole injectors in a constant volume chamber. The results show that the mixture moves along the impingement wall that reproduced the piston bowl and reaches in ignition spark plug. LPG spray receives more influence of ambient pressure and temperature significantly than that of n-dodecane spray.

Numerical analysis on the characteristics of disel spray for variation of injection spray angle and swirl ratio. (분사각 및 스월 변화에 따른 디젤분무의 특성에 관한 수치 해석)

  • Jung H.;Cha K. S.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2000
  • In high-pressure diesel engine, the injected fuel spray impinges on the piston cavity surface due to the short distance between the injection nozzle and the cavity wall. The behavior of the impinging spray has the great influence on the dispersion of fuel, the evaporation, and the mixture formation process. In this study, the numerical simulation using the GTT code was performed to study the gas flows, the spray behaviors, and the fuel vapor distributions in the combustion of a D.I engine for variation of spray angle and swirl ratio.

  • PDF

The Method and Apparatus for Photoresist Spray Coating with High Temperature Rotational Chuck (고온 회전 척을 구비한 포토레지스트 Spray Coating 방법 및 장치)

  • Park, Tae-Gyu;Kim, Jun-Tae;Kim, Kook-Jin;Suk, Chang-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.42-44
    • /
    • 2003
  • The paper presents the method and apparatus for conformal photoresist spray coating on the 3D structured substrate. The system consists of a high-temperature-rotational chuck, ultrasonic spray nozzle module, angle control module and nozzle moving module. The coating uniformity is acquired by controlling the moving speed of the ultrasonic spray nozzle across the substrate which is rotated constantly. To coat the photoresist conformally the spray angle of the nozzle and the temperature of the substrate are controlled during spray coating. The rotational chuck can be heated up by hot air or $N_2$. The photoresist (AZ1512) has been coated on the 3D structured wafer by spray coating system and the characteristics have been evaluated.

  • PDF

Fuel Spray Characteristics of GDI Injector (직분식 가솔린기관 인젝터의 연료 분무 특성)

  • Kwon, Sang-Il;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.194-201
    • /
    • 2000
  • This paper is intended to analyze the macroscopic behavior and transient atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. Time-resolved droplet axial and radial velocity components and droplet diameter were measured at many probe positions in both axial and radial directions by a two-component phase Doppler particle analyzer (PDPA). In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDI engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

  • PDF

Experimental Studies on Atomization Characteristics in Diesel Fuel Spray(I) (디젤분무특성에 관한 실험적 연구(I))

  • 박호준;장영준
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.76-84
    • /
    • 1990
  • To study diesel fuel spray behavior, an experimental study was undertaken to investigate injection characteristics in vary ing back pressure and atomization mechanism in a non-evaporating diesel spray. Generally, injection characteristics is the curve of fuel flow plotted against time. The area under this curve is equal to the total quantity of fuel discharged for one injection. The method that measures rate of injection is long tube-type fuel rate indicator. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking high speed camera by the focused shadow photographs. The results show that, at the start of injection, as the injected fuel rushes into the quiescent atmosphere the spray angle becomes large. Finally the spray stabilizes at a constant cone angle. Spray penetration length increases with the injection pressure.

  • PDF

Design Factors of Boom Sprayer(I) - Spray Patterns of Nozzles - (붐방제기 살포장치의 설계요인 구명을 위한 실험적 연구(I) -노즐의 분무유형-)

  • 정창주;김학진;조성인;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.217-225
    • /
    • 1995
  • This study was conducted to find design factors of spraying device of the boom sprayer for low volume application. Four types of nozzles(standard flat nozzle, drift guard nozzle, even flat nozzle, and hollow cone nozzle) were used for the spray characteristic experiment. Spray patterns of the nozzles were distinguished by the nozzle type, spray distance, and spray direction. The flow rate was proportional to the square root of spray pressure in all nozzles. Increased nozzle height improved spray distribution at reduced pressures and/or increased spacing. Distribution tended to improve as pressure increased within the range of pressures used for fan nozzles.

  • PDF

A PARAMETRIC SENSITIVITY STUDY OF GDI SPRAY CHARACTERISTICS USING A 3-D TRANSIENT MODEL

  • Comer, M.A.;Bowen, P.J.;Sapsford, S.M.;Kwon, S.I.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.145-153
    • /
    • 2004
  • Potential fuel economy improvements and environmental legislation have renewed interest in Gasoline Direct Injection (GDI) engines. Computational models of fuel injection and mixing processes pre-ignition are being developed for engine optimisation. These highly transient thermofluid models require verification against temporally and spatially resolved data-sets. The authors have previously established the capability of PDA to provide suitable temporally and spatially resolved spray characteristics such as mean droplet size, velocity components and qualitative mass distribution. This paper utilises this data-set to assess the predictive capability of a numerical model for GDI spray prediction. After a brief description of the two-phase model and discretisation sensitivity, the influence of initial spray conditions is discussed. A minimum of 5 initial global spray characteristics are required to model the downstream spray characteristics adequately under isothermal, atmospheric conditions. Verification of predicted transient spray characteristics such as the hollow-cone, cone collapse, head vortex, stratification and penetration are discussed, and further improvements to modelling GDI sprays proposed.

Analysis of Spray Characteristics in w-shaped Diesel Engine Combustion Chamber with Impingement Lands (충돌부를 갖는 w-형 디젤엔진 연소실의 분무특성분석)

  • Park, K.;Park, D.S.;Kim, M.H.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.40-45
    • /
    • 1996
  • This Paper addresses to spray characteristics in w-shaped diesel engine combustion chamber which has impingement parts for 4 sprays injected from an injector. The two-dimensional shapes have been chosen to avoid the difficulties for analysing the spray dynamics in the real chamber. The simple shapes are reproduced with same geometries in vertical or horizontal sections through the impingement lands. The spray developments are visualized with a high speed drum camera and shadowgraphy optical system, and the droplet sizes are measured by Malvern system. The detailed discussions m made for the two different combustion chamber shapes, which are new w-shape using spray wall impaction and general w-shape. The results show that the spray characteristics of the new shape are superior to those of the general w-shape.

  • PDF

The Behavior Characteristics of Diesel Impinging Spray on the Room Temperature Impinging Disk (상온 충돌판에서의 디젤 충돌 분무의 거동 특성)

  • Cha, K.J.;Se, G.I.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.24-31
    • /
    • 1996
  • This study addresses the behavior characteristics of diesel spray injected on the impinging disk with the room temperature. The models of impinging spray are the stick, the reflect and the wall jet model In the initiative of the fuel injection the impinging spray was the reflect model. because the momentum of droplets was very large. This model developed to the wall jet model according to the time approaches. On the low temperature disk the fuel film was made by the attachment of the droplets with low Weber number. The thickness of impinging spray was increased when the disk approached to the nozzle tip. Mathematical analysis for calculation with the behavior of impinging spray have to consider the reflecting effect and the influence of the fuel film.

  • PDF

Effects of the Bio-diesel Blending Rate on the Spray Characteristics of the Pressure Swirl Nozzle (바이오 디젤 혼합율이 압력식 스월노즐의 분무 특성에 미치는 영향)

  • Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.210-214
    • /
    • 2011
  • This paper presents the spray characteristics of the gun type burner nozzle with bio-diesel blending rate. The burner nozzle used in this experiment is a pressure swirl type nozzle. For the spray characteristics, visualization of spray was conducted to obtain the spray angle, and laser diffraction spectroscope (LDS) was used for the measurement of the droplet diameters. The results showed that the $D_{max}$, SMD and spray angle were decreased with increasing the bio-diesel blending rate and BD30 (30% bio-diesel blending rate) could be found to be the maximum blending rate for using without any modification of the gun type burner of the homesize kerosene fuel boiler.